What Should I Do Now?
Marrying Reinforcement Learning and Symbolic Planning

Daniel Gordon®

Dieter Fox!2

Ali Farhadi'?

'Paul G. Allen School of Computer Science, University of Washington
2Nvidia 3Allen Institute for Artificial Intelligence

Abstract

Long-term planning poses a major difficulty to many re-
inforcement learning algorithms. This problem becomes
even more pronounced in dynamic visual environments. In
this work we propose Hierarchical Planning and Reinforce-
ment Learning (HIP-RL), a method for merging the bene-
fits and capabilities of Symbolic Planning with the learning
abilities of Deep Reinforcement Learning. We apply HIP-
RL to the complex visual tasks of interactive question an-
swering and visual semantic planning and achieve state-
of-the-art results on three challenging datasets all while
taking fewer steps at test time and training in fewer itera-
tions. Sample results can be found at youtu.be/0TtWJ_
OmPfT!

1. Introduction

An important goal in developing systems with visual un-
derstanding is to create agents that interact intelligently with
the world. Teaching these agents about the world requires
several steps. An agent must initially learn simple behav-
iors such as navigation and object affordances. Then, it can
combine several actions together to accomplish longer term
goals. As the task complexity increases, the agent must plan
farther in the future.

In recent years, researchers have predominantly trained
interactive agents using either deep learning techniques on
raw visual data or using planning algorithms on symbolic
state representations. Deep learning has proven to be a very
useful tool at learning to extract meaningful features from
large sources of raw data. Deep Reinforcement Learning
(Deep RL) has gained significant traction in the vision com-
munity for simple tasks like playing video games [26, 27].
Yet as task complexity increases, and longer-term planning
is required, these systems can no longer learn good reactive
policies due to the exponentially branching state space.

Conversely, many robotics systems still favor planning
and search techniques such as RRTs and A* over the re-
active Deep RL counterparts [9, 29]. The traditional plan-
ning algorithms offer better generalization when sensor data

I'The full dataset and code will be open sourced soon.

Task: Find a bowl and put it in the microwave.

o I

Actions: Action: Navigate
Open Drawer 1

Close Drawer 1

Open Drawer 2...

Action: Navigate

Actions: Action: End. Action: Navigate Action: End.
Pickup Bowl Success Fail

Close Drawer

Open Microwave

Put Bowl

Figure 1: Sample Visual Semantic Planning task execution.
The agent is asked to put a bowl in the microwave. At t=0,
HIP-RL has not observed any locations where bowls can be,
so it explores the room. At t=1, the Meta-Controller invokes
the Planner which creates an efficient plan to check all the
cabinets. It also sees the microwave and saves this informa-
tion for later. At t=2 a bowl is found, and the Planner up-
dates its plan to finish the task. Since HIP-RL already saw
the microwave, it saves time by not needing an additional
search. At t=3 the Planner puts the bowl in the microwave,
returning control to the Meta-Controller which finishes the
episode. In contrast, the Pure RL system spends much more
time exploring the room, does not open any drawers, and
ends the episode after many more steps, failing the task.

is clean, and many provide optimality guarantees which
are beneficial for ensuring safety in potentially dangerous
robotics environments. However most planning algorithms
assume either perfect or fairly accurate state estimation and

youtu.be/0TtWJ_0mPfI
youtu.be/0TtWJ_0mPfI

cannot operate on high dimensional raw sensor input. This
is especially true for task planning algorithms which use bi-
nary values as state representations (e.g. the apple is in the
fridge) like Planning Domain Definition Language (PDDL)
solvers.

As such, deep learning and task planning have comple-
mentary benefits and drawbacks: deep learning techniques
can extract information from raw (pixel) data but fail at
long-term planning, and task planning require preprocessed
data but can use it to construct multi-step plans which sat-
isfy complex goals.

Much of the recent work in this area has treated learning
and planning as separate problems. We present Hierarchical
Planning and Reinforcement Learning (HIP-RL), a method
for merging these techniques to benefit from the strengths of
both. HIP-RL has several advantages over traditional plan-
ning as well as over current Deep RL techniques. 1) Due
to the correctness/completeness guarantees of the planner,
HIP-RL increases the accuracy and effectiveness over com-
parable pure RL systems. 2) By relying on a planner to
create sequences of actions, HIP-RL significantly reduces
the number of steps that an agent takes at test time. 3) By
simplifying the learning procedure and shortening the path
lengths, we are able to train our algorithm using an order
of magnitude fewer training examples. 4) HIP-RL can also
learn to account for noisy sensor data which may otherwise
hinder a symbolic planner.

To evaluate the usefulness and effectiveness of our al-
gorithm, we apply HIP-RL to a variety of tasks. First,
we apply HIP-RL to the task of Interactive Question An-
swering (IQA), an extension of Visual Question Answering
(VQA) where an agent dynamically navigates in and inter-
acts with an environment in order to answer questions. We
apply HIP-RL to IQUAD V1 [13] and EQA V1 [11] and
achieve state-of-the-art results on both tasks. We addition-
ally show that HIP-RL is able to perform complex Visual
Semantic Planning (VSP) tasks such as Find a bowl
and put it in the microwave, dramatically out-
performing both learning-only and planning-only baselines.
In general, we find that using planning and learning together
results in higher accuracy, more efficient exploration, and
faster training than other methods.

2. Related Work

2.1. Planning and Learning

Although both learning and planning have significant
amounts of prior work, there have been relatively few at-
tempts at merging the two. Many recent reinforcement-
learning based algorithms fail when long-term planning is
required; most algorithms trained on ATARI fail on the
Montezuma’s Revenge game due to its sparse rewards and
long episodes [26]. Yet when planning and learning are
combined, the results are often greater than either could do
alone. One example of successfully merging planning and
learning is the AlphaZero family of algorithms which com-

bine Deep RL for board state evaluation and Monte Carlo
Tree Search (MCTS) for planning and finding high-value
future board positions [28]. Rather than using MCTS to
intelligently explore future states, which is not feasible in
a partially observed visually dynamic environment, we use
the Metric-FF Planner [16] to plan a single trajectory to the
goal state. This chains actions together in order to shorten
the number of hierarchical decisions and reduce the size
of the action space. Planning in stochastic environments
is often solved using Partially Observable Markov Deci-
sion Processes. Although they are frequently used to great
success [1, 6], POMDPs often assume a known noise and
transition model, which is not readily applicable for algo-
rithms which use deep feature extraction. We avoid this is-
sue by using both planning and learning; although our plan-
ner operates under the assumption of perfect and complete
information, the Meta-Controller can divert control to the
learning-based methods in the event of a planner failure or
to gather more information.

2.2. Hierarchical Reinforcement Learning (HRL)

HRL seeks to solve several problems with standard re-
inforcement learning such as handling very long episodes
with sparse rewards. The design of these systems typi-
cally has one hierarchical meta-controller which invokes
one of several low-level controllers. Each low-level con-
troller is trained to accomplish a simpler task. In many
cases [11, 12, 13, 22, 30] both the meta-controller and all
low-level controllers are learned, and in some cases [22, 30]
the tasks of the sub-controllers are also learned purely
from interactions during training episodes rather than being
human-engineered. This allows these systems to generalize
well to unseen tasks with only a few training examples for
the new tasks. In contrast, we use some learned low-level
controllers, and some which use planning algorithms to di-
rectly solve subtasks. This allows our system to train qickly
and still generalize well to new tasks with only moderate
additional goal-state specification.

2.3. Deep RL in Virtual Visual Environments

In the past few years, many different virtual platforms
have been created in order to facilitate better Deep RL.
Virtual environments provide limitless labeled data and are
easily parallelizable. Some of the most popular are Ope-
nAl Gym [5] and VizDoom [19] which both build on ex-
isting video games, and MuJoCo [32] which implements
more realistic contact physics. More recently, multiple
environments have been created which offer near-photo-
realistic and physically accurate interaction such as AI2-
THOR [20], Gibson [34], and CHALET [35]. Other envi-
ronments forgo photo-realism for increased rendering speed
such as House3D [33], and DeepMind Lab [4].

Additionally, there have been many advancements in
learning from interactions with a virtual visual environ-
ment. Recent works have used virtual environments for
Question Answering [! 1, 12, 13], visually-driven naviga-

tion [14, 25, 37], and semantic navigation [3, 7]. How-
ever, much of the focus has been on improving navigation
techniques in these environments. We are interested in ex-
panding beyond navigation to more complex visual tasks
which require both navigation and long term planning. In
this work, we use the existing IQUAD V1> dataset pre-
sented in [13] which is built on the AI2-THOR [20] envi-
ronment, and EQA V13 [11] which uses the House3D envi-
ronment [33]. Additionally, we construct a new dataset for
Visual Semantic Planning built on AI2-THOR, explained
more in section 4.2.

2.4. Task and Motion Planning (TaMP)

Task and motion planning is the problem of accomplish-
ing goals at a high level by planning the exact motion trajec-
tories for a robot. Much of the work in TaMP uses hierarchi-
cal algorithms to plan high level actions for long-term goals
and use motion planning algorithms for fine-grained motor
manipulation. [18] outlines a detailed hierarchy for plan-
ning and executing simple manipulation tasks. [2 1] attempt
to learn symbolic representations by interacting with an en-
vironment and observing the effects of actions. [8] learn
heuristics to shorten the search procedure for their TaMP
algorithm. We differ from these approaches in that we
assume perfect manipulators, which simplifies our control
setup, but use pixel-level inputs from near-photo-realistic
3D simulation environments. We also do not assume com-
plete state information is given to the controller. Finally, we
use reinforcement learning to direct our hierarchical con-
troller, whereas most methods treat the entire state as fully
observable and therefore plan and execute complete motion
trajectories from the initial state.

3. Method

In order to accomplish complex tasks, a system must be
able to plan long action trajectories which satisfy the task
goals. To operate in a visual world, a system must learn to
understand a dynamic visual environment. Thus, to learn
to plan in a visual environment, we combine Deep RL with
Symbolic Planning, handing control of the agent back and
forth between the two methods. In this section we outline
the individual components of HIP-RL as well as how they
work together to solve complex learning and planning tasks.

3.1. Hierarchical Planning and Reinforcement
Learning (HIP-RL)

HIP-RL consists of a hierarchical Meta-Controller, sev-
eral direct (low-level) controllers, and a shared knowledge
state (Figure 2). The knowledge state contains all percep-
tual and interactive information such as navigable locations,
object positions, and which cabinets have previously been
opened, as well as the goal representation. For example, in

Zhttps://github.com/danielgordon10/thor-iqa-cvpr-2018
3https://github.com/facebookresearch/EmbodiedQA

Embedding
ls
! ! !

Direct Controllers
(Planner, Explorer, Stopper, Etc.)

Map/State Knowledge

Figure 2: Diagram of the HIP-RL framework. Each direct
controller interacts with the environment based off of com-
mands given by the Meta-Controller. All controllers share a
knowledge state which is updated by the various controllers
during the episode based on perceptual and interactive ob-
servations.

Figure 1 the knowledge state in image @) contains the posi-
tions of the drawers, the microwave, the red plate, and the
fact that none of the drawers have been checked. Each con-
troller can read all of the state knowledge, and can update a
portion of the knowledge based on its perception; the Navi-
gator can update the world map, and the Object Detector can
update the object locations but not vice versa. At the start of
an episode, the Meta-Controller chooses which direct con-
troller should be used to advance the current state towards
the goal state, invoking that direct controller with a subtask.
The direct controller attempts to accomplish this subtask
and returns control back to the Meta-Controller upon com-
pletion. This process is repeated until the Meta-Controller
decides the full task has been accomplished and calls the
Stopper to end the episode.

3.2. Hierarchical Meta-Controller

The Meta-Controller receives the goal and decides which
of the direct controllers to invoke. It learns to trade off be-
tween the length of an episode and the reward/penalty re-
ceived for successfully or unsuccessfully ending an episode.
We train this behavior using the A3C algorithm [26] to re-
ward successful episodes, penalize unsuccessful episodes,
and add a time penalty for each hierarchical step. We vi-
sualize the Meta-Controller’s architecture in the context of
Interactive Question Answering in Figure 3. It takes as in-
put a top-down spatial map of object locations, the ques-
tion representation, and the current image from the envi-
ronment. The question embedding is concatenated with the

Detected Object Map

Spatial

[7] P(Explore)
P(Scan)
P(Plan)

Tiled Question Embedding

l Is there an apple in the frldge?

I

(7

Current Image

Spatial Attention Map H —

L| P(Answer)
3 value

P(Answer,)
4 P(Answer,)
P(Answer,)

Spatial

Y0
ﬁ Convolution

H/ Concatenation

|:| Fully Connected

@) GRU

Figure 3: Overview of the network architecture for the hierarchical Meta-Controller (and answerer) used for IQA tasks.
The network takes as input the full detected object map, the question, and the current image. The question is embedded
and spatially tiled. We concatenate the object map features with the question embedding, perform several convolutions, and
spatially sum the output. Similarly, we concatenate the image features with the question embedding, and use an attention
mechanism conditioned on the question to spatially sum the features. We do not use an attention mechanism on the detected
object map as this makes counting questions difficult. The image features additionally use a GRU [10] to add temporal
context. Since the detected object map is purely additive (the final map contains at least as much information as the previous
ones) no temporal context is necessary. The map and image features are concatenated and fed into a fully-connected layer.
The network outputs a probability distribution over the actions, a value estimate for the state, and a distribution over the

answers for the question.

spatial map and visual features to condition the features on
the question. The network outputs a probability distribu-
tion over the action space of direct controllers as well as a
value for the current state. The Meta-Controller architecture
for Visual Semantic Planning is exactly the same except the
question embedding is replaced with the semantic task em-
bedding, and there is no answer branch in the output.

3.3. Planner

The Planner is tasked with returning a sequence of ac-
tions which would accomplish the goal. It operates on log-
ical primitives using the Planning Domain Definition Lan-
guage (PDDL) and is guaranteed to return a correct set of
high-level planning actions given the observations are ac-
curate. PDDL specifies states using “fluents” which can be
boolean values (cabinet 1 is open, an apple is in the fridge)
or numeric (location A and B are 10 steps apart). Actions
consist of templatized preconditions necessary for the ac-
tion to be possible, and effects, which modify the values of
the fluents caused by executing that action. For example, the
Open action takes the preconditions that an object must be
openable but closed and that the agent must be near the ob-
ject, and has the effect of setting the object’s c1losed fluent
to False. Goals specify a set of criteria necessary for com-

pleting some task. Even complex tasks which take hundreds
of steps like Put all the mugs into the sink.
may be easily specified. When using the Planner’s output,
HIP-RL sequentially takes the next Planner action, runs the
Object Detector and updates the knowledge representation,
and replans. This allows the Planner to easily recover from
incorrect initial detections or false negatives which may
be corrected over time. The Planner returns control either
when the goal state has been reached, when it determines
the goal is impossible, or after a fixed number of steps.

An example Planner sequence for the question Is
there a bowl in a drawer? is as follows. The
Meta-Controller invokes the Planner with the goal A1l
drawers have been checked or a bowl is
in a drawer. The knowledge state contains three
drawers and the microwave. The Planner outputs a plan to
check each drawer. The first drawer is empty, so the plan
continues. In the second drawer, the bowl is found, and the
Planner returns control to the Meta-Controller.

In a different example for the same task, the Planner
checks each drawer and the bowl is in none of them. Af-
ter all drawers are checked, the Planner returns control to
the Meta-Controller.

Grouping the multi-step output from the Planner into a
single decision made by the hierarchical controller gives
HIP-RL several advantages over pure RL solutions. Pri-
marily, this significantly reduces our action space and the
number of high-level steps in a single episode. Furthermore,
because the Planner guarantees that the goal will be reached
(or ruled impossible), HIP-RL can be more thorough and ef-
ficient in its exploration. In the examples above, if the agent
had only checked a single drawer and moved on, it would
have missed the opportunity to know the answer was “yes”
or be more confident that the answer was “no.”

In this work we use the Metric-FF PDDL solver [16],
one of the most popular planning algorithms for operat-
ing on PDDL instances. Metric-FF extends the origin FF
Planning algorithm [17] to both boolean and numerical val-
ues. Metric-FF uses hill-climbing on relaxed plans (plans in
which contradictions are ignored) as a heuristic to estimate
the distance to the goal. For numeric values, the relaxation
takes the form of ignoring any non-monotonicly increas-
ing effects that an action may have. Finding the absolute
shortest solution to PDDL problems is NP-Complete, but in
practice, Metric-FF usually returns nearly optimal plans in
around 100 milliseconds. We include a sample PDDL state
and action domain and corresponding Planner output in the
supplemental material.

3.4. Object Detector

The Object Detector must detect objects from the cur-
rent image, but it must also track what it has detected in
the past. In this work, we assume perfect camera location
knowledge which simplifies this process. The Object De-
tector predicts object masks as well as pixelwise depths, and
the objects are projected into a global coordinate frame and
merged with prior detections. In our experiments we use
Mask-RCNN [15] for the detection masks and the FRCN
depth estimation network [23] which are both finetuned on
the training environments. We merge detections by joining
the bounding cube around two detections if their 3D inter-
section is above a certain threshold (in practice 0.3). A more
sophisticated strategy with more frequent detections such as
Fusion++[24] could further improve our method (however
Fusion++ requires a depth camera). In Figure 3, the De-
tected Object Map represents the previously detected ob-
jects and their spatial locations.

3.5. Navigator

We use the Navigator from [13] as it shows reliable per-
formance for going to locations specified in a relative co-
ordinate frame by a hierarchical controller. The Navigator
predicts edge weights for a small region in front of the agent
and uses an Egocentric Spatial GRU to update the memory
state. Then it chooses the next action based on A* search to
the target location. For more details, see [13]. To improve
the overall execution speed of our method, our algorithm
only calls the Object Detector once the navigation has fin-
ished rather than at every intermediate location.

3.6. Stopper

The Stopper is tasked with finishing an episode. For
VSP, the Stopper simply terminates the episode. How-
ever for IQA, the Stopper must provide an answer to the
posed question. For this, we train a network which takes
the question, the entire memory state, and the current im-
age features as input and outputs an answer. For questions
from IQUAD V1, we use state information from the Ob-
ject Detector to improve our accuracy. For example, for the
question Is there bread in the room? since we
track whether we have detected bread to be able to end plan-
ning upon detection, we can provide this information to the
Stopper as well. For EQA V1, since the questions can be
answered from a single image, we provided an additional
image channel representing a detection mask of the ques-
tion’s subject. The Stopper is only trained based on the last
state from a sequence via cross entropy over the possible
answers. In practice, the Stopper shares a network with the
Meta-Controller, as shown in Figure 3 which encourages
the learned features to be semantically grounded.

3.7. Explorer

To gather more information about an environment, the
Explorer finds a location which has not been visited and in-
vokes the Navigator with that location. In this work, the
Explorer is not learned; instead, it tracks where the agent
has been and picks the location and orientation which max-
imizes new views while minimizing the distance from the
current agent location. Note that the Explorer still operates
on the Navigator’s learned free-space map.

3.8. Scanner

The Scanner issues a predefined sequence of commands
to the environment to obtain a 360° view of its surround-
ings. Specifically, it performs three full rotations at +30,
0, and -30 degrees with the horizon, stopping every 90 de-
grees to run the Object Detector. It is often useful to call the
Scanner after calling the Explorer, but we leave this up to
the hierarchical controller to learn.

4. Tasks and Environments

We focus on two tasks (Interactive Question Answer-
ing and Visual Semantic Planning) in two virtual environ-
ments (AI2-THOR [20] and House3D [33] for IQA, and
AI2-THOR for VSP). Both tasks require complex visual
and spatial reasoning as well as multi-step planning.

4.1. Interactive Question Answering (IQA)

We evaluate our agent on both IQUAD V1 [13] and
EQA V1 [11]. IQUAD V1 provides 75,600 training ques-
tions in 25 training rooms, and 1920 test questions in 5 un-
seen rooms. Additionally, IQUAD V1 provides 2400 test
questions in seen rooms which helps factor out errors due to
object detection noise. For EQA V1, we use the published
train/val splits which consist of 7129 training questions in
648 train houses and 853 validation questions in 68 unseen

houses. [1, 12] show results with the agent starting 10, 30,
or 50 steps away from the goal, yet only their results for 10
steps outperform the language baselines of [31]. As such,
we limit our experiments to starting 10 steps away.

In IQUAD VI, the agent must interact with kitchen
scenes (opening drawers, exploring the room) in order
to gather information to answer questions about the ob-
jects in the room such as Is there a mug in the
microwave? EQA V1 places an agent in a house a certain
distance away from the object of interest and asks questions
like What color is the ottoman? Both datasets
use templated language. For more detail on these datasets,
see [11, 13].

For IQUAD V1, we specify the goal state for the Plan-
ner as either checking all locations where the question’s
subject could be, or knowing where the question’s sub-
ject is. For example, for the question Is there a mug
in the microwave? the Planner must only check the
microwave, but for the question Is there a mug in
the room? the Planner must check the microwave, the
fridge, and all the drawers until it finds at least one mug.
For EQA V1, we state the goal as “the agent is looking at
the object of interest if it knows where it is, or it has looked
through all the doorways that it has seen.” This encour-
ages the Planner to explore various different rooms in the
environment in the case where the object of interest is not
located in the starting room.

4.2. Visual Semantic Planning (VSP)

We also use the AI2-THOR environment [20] for seman-
tic planning tasks such as Put the apple in the
sink. These tasks are similar to those often done in Task
and Motion Planning. Each task specifies one of 13 small
objects (such as mug, fork, potato), and one of 6 target lo-
cations (such as fridge, cabinet, sink), but unlike in [36],
we train one network to accomplish all tasks rather than
one for each pair of object-locations. Additionally, we in-
clude navigation as a subtask of planning which [36] omits.
Compared with IQA, VSP contains only a single task type
but uses a larger action space to facilitate picking up and
putting down objects. Although we only test a single task
type, we include more complex tasks in the supplemental
material. We do not perform Visual Semantic Planning in
House3D [33] as the environments are static. We use the
same train/test split of environments as in IQUAD V1, and
construct 25,200 training tasks, 640 test tasks in unseen
rooms, and 800 tasks in seen rooms. When constructing
the tasks, we verify that each task is possible, yet cannot
be completed by the empty plan, e.g. for the task Put a
mug in a cabinet. there exists at least one mug and
at least one cabinet, but no mugs start in cabinets. This data
will be made available upon publication.

5. Experiments

We compare HIP-RL across the datasets outlined in Sec-
tion 4 using existing state-of-the-art methods as baselines as
well as the unimodal baselines from [3 1] and pure planning
baselines. On each dataset, we record the accuracy/success
of our method as well as the episode length. Except in the
generalization experiment, all tests are done on unseen en-
vironments. [2] proposes the Success weighted by (normal-
ized inverse) Path Length (SPL) which combines accuracy
and episode length into a single metric for evaluating em-
bodied agents on pure navigation tasks. SPL is defined as

1 & ‘
SPL= Nz;SimM(pi,&) M

i=

where .S; is a success indicator for episode i, p; is the path
length, and ¢; is the shortest path length. SPL is not suffi-
cient for question answering as an agent which never moves
could still be very successful depending on the difficulty of
the questions®. To address this issue, we propose the Shifted
SPL (SSPL) metric which is defined as

SSPL = ’1‘: Z « SPL)

where p is the average accuracy of the method and b is
the average accuracy of a baseline agent which is forced to
end/answer immediately after beginning an episode. Note
that SSPL directly accounts for dataset biases by subtract-
ing the accuracy of a learned baseline rather than simply
the most common answer or random chance accuracy. For
the VSP experiments SPL is exactly equal to SSPL, as a
baseline which cannot move will achieve 0% success. For
the IQA experiments we use the “Language Only” baselines
presented in [31] as b.

5.1. Baselines

On all datasets we include (at least) one pure-learning
and one pure-planning baseline. The ‘“Planner Only” base-
line uses the same Plan/Act/Observe/Replan loop as HIP-
RL but does not include any hierarchical decision making.
Additionally, if at the start of the episode the plan is empty
(for example if the agent starts looking at a wall), we ro-
tate the agent until the plan is not empty. We also use the
“Language Only” baselines from [3 1] which attempt to an-
swer the question without making any actions, effectively
learning the language bias of the dataset. For VSP, we intro-
duce a “Learning Only” baseline which removes the Planner
from HIP-RL and adds reward shaping to encourage certain
interactions like looking at and picking up the object of the
task. Even after significant training time, this method fails
to learn a working policy.

4[31] shows significant bias exists in EQA V1 [11] and in Matter-
Port3D [3]

IQUAD V1 EQA V1 VSP

Accuracy Episode Length SSPL | Accuracy Episode Length SSPL | Success Episode Length SSPL
fsli‘:;f;yg;};h%;’tti’rﬂ;g‘“ma“"“ 100% 88.710 1 100% 10 1 100% 87.477 1
State-of-the-art for IQUAD V1 [13] and EQA VI[12] 52.52% 586.890 0.015 | 53.58% - - - - -
Planner Only 56.91% 138.644 0.105 | 49.53% 44.424 0.002 | 11.41% 105.559 0.059
HIP-RL 65.99% 357.690 0.086 | 58.41% 154.781 0.007 | 46.01% 427.784 0.189
[13] with GT Detections 64.27% 531.840 0.042 - - - - - -
Planner Only with GT Detections 74.53% 169.773 0.251 | 54.15% 22.780 0.025 | 43.44% 161.998 0.245
HIP-RL With GT Detections 81.25% 297.238 0.177 | 65.28% 127.011 0.017 | 73.75% 254.367 0.362
[13] with GT Detections and Nav 69.85% 655.100 0.046 - - - - - -
Planner Only with GT Detections and Nav 68.07% 56.961 0.091 | 49.64% 18.784 0.004 | 31.72% 48.095 0.268
HIP-RL with GT Detections and Nav 83.30% 182.191 0.325 | 65.52% 65.237 0.033 | 81.88% 161.013 0.549

Table 1: Comparison of accuracy and episode length with varying levels of ground truth (GT) information on unseen environ-
ments. In some cases, the “Planner Only” is fast enough to outperform HIP-RL on the SSPL metric, indicating there is still
significant progress to be made on speeding up HIP-RL. Interestingly, using the navigation system instead of GT navigation
helps the “Planner Only” method by giving it more varied locations to run Object Detector. The shortest path estimate for
IQUAD V1 and VSP is equivalent to the “Planner Only with GT Detections and Nav”” method except that it is additionally
given the positions of all large objects (fridges, cabinets, etc.). In IQUAD V1 finding true shortest paths is an instance of the
traveling salesman problem. For EQA V1 the shortest path is found using an oracle with preexisting knowledge of the loca-

tion of the target object. In all experiments we use either the FRCN [

or ground truth detection masks and depth.

Accuracy/Success on the IQA and VSP tasks
in Unseen Environments Accuracy/Suceess

0 01 02 03 04 05 06 07

Most Frequent Answer
Language Only [31]
HIMN [13] (Learner Only)
Planner Only

HIP-RL

IQUAD V1

Most Frequent Answer
Language Only [31]
NMC [12] (Learner Only)
Planner Only

HIP-RL

EQAVI

Learner Only |
Planner Only
HIP-RL

VSp

Figure 4: Accuracy of various methods on each of the tasks.
In all cases, HIP-RL achieves state-of-the-art performance.
We include “Learner Only” and “Planner Only” results for
each experiment to show that combining both their strengths
is better than either alone.

5.2. Results

We test our system for accuracy on IQUAD VI,
EQA V1, and the new VSP dataset, achieving state-of-the-
art performance on all tasks. The results are shown in Fig-
ure 4. In IQUAD V1 and VSP the “Planner Only” base-
line outperforms the “Learning Only” baseline which co-
incides with the fact that the ground-truth trajectories are
significantly longer and contain more necessary interactions
than in EQA V1. A fundamental issue with reinforcement
learning is that it must “luck into” good solutions randomly
before it can improve, which can be very rare in complex
multi-step tasks. Planning simplifies this by directly solv-
ing objectives rather than making guesses and observing
rewards or penalties. Yet pure planning suffers from my-

] depth network in conjunction with Mask-RCNN [15]

opia in that (in our system) it assumes perfect and complete
global information, leading it to ignore unobserved parts of
the environment. This is most apparent in VSP where the
planner assumes a task is impossible if it has not observed
a location where the object can be. By combining both
strategies, HIP-RL achieves the exploration tendencies of
RL along with the goal-oriented direct problem solving of
planning.

5.3. Ablation

We further explore the effect that various sources of in-
accuracy have on HIP-RL by substituting the Object Detec-
tor and the Navigator with Ground Truth (GT) information,
shown in Table 1. Adding GT detections greatly improves
our accuracy across the board. This is due to all the tasks
being very object-centric, so if the object is misidentified or
not detected at all, the Answerer/Planner has no means of
fixing the mistake. In contrast, using GT Navigation does
not improve performance dramatically, but the path lengths
do nearly halve. In practice we observe this is frequently
not from the navigation agent wandering randomly but is
instead usually from the beginning of the episodes where
the map starts empty and the navigator unknowingly goes
down dead ends or takes otherwise inefficient paths.

5.4. Episode Efficiency

Table 1 also lists episode lengths and SSPL scores for
each method. Note that episode lengths include every inter-
action with the environment (turn left, open, move ahead
each count as one action), not just hierarchical actions.
While HIP-RL dramatically improves over [13], there is
still a large gap between the shortest path estimate. Some
inefficiency due to exploration is unavoidable, but there are
also cases where the agent explores even after it could an-
swer. This generally occurs in IQUAD V1 on counting

IQUAD V1 Unseen IQUAD V1 Seen
Accuracy Length SSPL | Accuracy Length SSPL
HIP-RL 65.99% 357.690 0.086 | 77.75% 265.668 0.182
HIP-RL + GT Det | 81.25% 297.238 0.177 | 87.04% 277.538 0.278

VSP Unseen VSP Seen
Success Length SSPL | Success Length SSPL
HIP-RL 46.01% 427.784 0.189 | 70.88% 245301 0.384
HIP-RL + GT Det | 73.75% 254367 0.362 | 82.48% 170.22 0.504

Table 2: Comparison of accuracy/success on seen and un-
seen environments. HIP-RL is the full method, and HIP-RL
+ GT Det uses the ground truth detections.

questions where the agent is not sure that it has sufficiently
checked everywhere where the object could be.

5.5. Generalization

One benefit of hierarchical models is they tend to gen-
eralize better as they force certain structure to be consis-
tent between seen and unseen environments. Yet if the
hierarchical models depend on the performance of indi-
vidual components, then the generalization performance of
the constituent models directly affects the overall perfor-
mance. In Table 2 we explore the generalization of HIP-
RL on IQUAD V1 and VSP by comparing performance
on rooms seen during training time with never-before-seen
rooms (EQA V1 only provides test questions for unseen en-
vironments). With ground truth detections, HIP-RL gener-
alizes quite well, losing less than 10% raw performance in
both cases and staying nearly as efficient step-wise. With
Mask-RCNN [15] detections and FRCN depth [23], per-
formance is still reasonably similar, but there is a larger
gap. Mask-RCNN produces high-quality results on large
datasets, yet in the case of AI2-THOR [20], there are fre-
quently only 25 training and 5 testing samples of a partic-
ular class. Thus, Mask-RCNN struggles to detect the cabi-
nets and drawers in unseen environments from AI2-THOR
(as there are many cabinets and drawers per scene but none
repeat in multiple rooms), so frequently many areas remain
unchecked. We believe that in scenarios with many more
training examples, HIP-RL with detection would approach
the same level of generalization performance as without.

5.6. Learning Speed

We compare the convergence speed of HIP-RL on the
IQUAD V1 task with the previous state-of-the-art model,
HIMN [13]. After only 26,000 hierarchical steps, HIP-
RL with ground truth information matches the final perfor-
mance of HIMN with ground truth at 8 million hierarchical
stepsS. After 120,000 hierarchical steps, HIP-RL (without
ground truth) converges to its maximum performance com-
pared to HIMN which takes 500,000 iterations and achieves
significantly worse performance. HIP-RL trains orders of
magnitude faster than traditional RL algorithms because the

> We use the number of hierarchical steps rather than the total number
of steps in the environments as hierarchical steps are of variable length
and do not provide gradients to the hierarchical controller until the final
low-level action.

Unseen Environment Performance Over Time

Accuracy

0.5

0.4 L !
1,000 10,000 100,000 1,000,000 10,000,000

Number of Training Hierarchical Steps (log scale)

HIP-RL with GT Detection and Nav HIP-RL HIMN [13] with GT Detection and Nav HIMN [13]

Figure 5: Learning speed of HIP-RL and HIMN [13] with
and without ground truth information. HIMN’s Answerer
is additionally pretrained on fully observed rooms whereas
HIP-RL does not require any pretraining.

planner simplifies much of the learning by being able to im-
mediately (upon initialization) return good, thorough tra-
jectories. Being thorough early on is especially useful for
question answering where an algorithm may get confusing
feedback if it answers too soon; for example, for the ques-
tion Is there a bowl in the room? if an agent
does not see a bowl and answers “no” but the correct an-
swer is “yes,” the network will receive contradictory learn-
ing signals. By using a planner, we ensure more thorough
exploration so this case is much less likely to occur, even at
the beginning of training.

6. Conclusion

In this work, we presented Hierarchical Planning and Re-
inforcement Learning, a method for combining the bene-
fits of Deep Reinforcement Learning and Symbolic Plan-
ning. We demonstrate its effectiveness at increasing accu-
racy while simultaneously decreasing episode length and
training time. Though this exact implementation may not
be applicable to many other tasks, we believe the high level
idea of learning to invoke various direct controllers, some of
which explicitly plan, could be applied to a broader array of
tasks such as Task and Motion Planning. In general, we ob-
serve that using planning algorithms to assist in performing
“good” actions results in improved accuracy, test-time effi-
ciency, and training speed. Still, HIP-RL could be improved
to explore more efficiently using priors based on likely lo-
cations of an object. Additionally, we could learn the PDDL
preconditions and effects directly so as to limit the need for
human labels. We are excited about the potential impacts
of visual agents and their ability to learn to interact more
intelligently with the world around them.

7. Acknowledgements

This work was funded in part by the National Science
Foundation under contract number NSF-NRI-1637479,
NSFE-IIS-1338054, NSF-1652052, ONR NO00014-13-1-
0720, the Allen Distinguished Investigator Award, and the
Allen Institute for Artificial Intelligence. We would like to
thank NVIDIA for generously providing a DGX used for
this research via the UW NVIDIA AI Lab (NVAIL).

References

(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

C. Amato, G. Konidaris, A. Anders, G. Cruz, J. P. How, and
L. P. Kaelbling. Policy search for multi-robot coordination
under uncertainty. The International Journal of Robotics Re-
search, 35(14):1760-1778, 2016. 2

P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy,
S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi,
M. Savva, and A. R. Zamir. On evaluation of embodied nav-
igation agents. arXiv preprint arXiv:1807.06757, 2018. 6

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson,
N. Siinderhauf, I. Reid, S. Gould, and A. van den Hen-
gel. Vision-and-Language Navigation: Interpreting visually-
grounded navigation instructions in real environments. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 3, 6

C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wain-
wright, H. Kiittler, A. Lefrancq, S. Green, V. Valdés,
A. Sadik, et al Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016. 2

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym, 2016.
2

P. Cai, Y. Luo, D. Hsu, and W. S. Lee. Hyp-despot: A hy-
brid parallel algorithm for online planning under uncertainty.
Robotics Science and Systems (RSS) 2018, 11, 2018. 2

D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Ra-
jagopal, and R. Salakhutdinov. Gated-attention architectures
for task-oriented language grounding. AAAI-18 Conference
on Artificial Intelligence, 2018. 3

R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava,
E. Groshev, C. Lin, and P. Abbeel. Guided search for task and
motion plans using learned heuristics. In Robotics and Au-
tomation (ICRA), 2016 IEEE International Conference on,
pages 447-454. 1EEE, 2016. 3

S. Chitta, I. Sucan, and S. Cousins. Moveit![ros topics].
IEEE Robotics & Automation Magazine, 19(1):18-19, 2012.
1

K. Cho, B. van Merriénboer, C. Giilgehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder—decoder for statistical ma-
chine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724-1734, Doha, Qatar, Oct. 2014. Asso-
ciation for Computational Linguistics. 4

A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Ba-
tra. Embodied question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 5, page 6, 2018. 2,3, 5,6

A. Das, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Neu-
ral Modular Control for Embodied Question Answering. In
Proceedings of the Conference on Robot Learning (CoRL),
2018. 2,6,7

D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox,
and A. Farhadi. Iqa: Visual question answering in interac-
tive environments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4089—
4098, 2018. 2,3,5,6,7, 8

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Ma-
lik. Cognitive mapping and planning for visual navigation.

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2616-2625, 2017. 3

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.
In Computer Vision (ICCV), 2017 IEEE International Con-
ference on, pages 2980-2988. IEEE, 2017. 5,7, 8

J. Hoffmann. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal
of Artificial Intelligence Research, 20:291-341, 2003. 2, 5
J. Hoffmann and B. Nebel. The ff planning system: Fast
plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253-302, 2001. 5

L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task
and motion planning in the now. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages
1470-1477. 1IEEE, 2011. 3

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaskowski. Vizdoom: A doom-based ai research platform
for visual reinforcement learning. In Computational Intelli-
gence and Games (CIG), 2016 IEEE Conference on, pages
1-8. IEEE, 2016. 2

E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and
A. Farhadi. AI2-THOR: An Interactive 3D Environment for
Visual Al arXiv, 2017. 2, 3,5,6, 8

G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From
skills to symbols: Learning symbolic representations for ab-
stract high-level planning. Journal of Artificial Intelligence
Research, 61:215-289, 2018. 3

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenen-
baum. Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In Advances
in neural information processing systems, pages 3675-3683,
2016. 2

I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and
N. Navab. Deeper depth prediction with fully convolutional
residual networks. In 3D Vision (3DV), 2016 Fourth Interna-
tional Conference on, 2016. 5,7, 8

J. McCormac, R. Clark, M. Bloesch, A. Davison, and
S. Leutenegger. Fusion++: Volumetric object-level slam. In
2018 International Conference on 3D Vision (3DV), pages
32-41.IEEE, 2018. 5

P. W. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard,
A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,
D. Kumaran, and R. Hadsell. Learning to navigate in com-
plex environments. [International Conference on Learning
Representations (ICLR), 2017. 3

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International
Conference on Machine Learning, 2016. 1,2, 3

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-
driven exploration by self-supervised prediction. In Inter-
national Conference on Machine Learning (ICML), volume
2017, 2017. 1

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354,2017. 2

I. A. Sucan, M. Moll, and L. E. Kavraki. The open motion
planning library. IEEE Robotics & Automation Magazine,
19(4):72-82,2012. 1

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and
S. Mannor. A deep hierarchical approach to lifelong learning
in minecraft. In AAAL volume 3, page 6, 2017. 2

J. Thomason, D. Gordon, and Y. Bisk. Shifting the base-
line: Single modality performance on visual navigation &
qa. arXiv preprint arXiv:1811.00613,2018. 6

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine
for model-based control. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages
5026-5033. IEEE, 2012. 2

Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian. Building general-
izable agents with a realistic and rich 3d environment. arXiv
preprint arXiv:1801.02209, 2018. 2, 3,5, 6

F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese.
Gibson env: Real-world perception for embodied agents. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9068-9079, 2018. 2

C. Yan, D. Misra, A. Bennnett, A. Walsman, Y. Bisk, and
Y. Artzi. Chalet: Cornell house agent learning environment.
arXiv preprint arXiv:1801.07357, 2018. 2

Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta,
R. Mottaghi, and A. Farhadi. Visual semantic planning using
deep successor representations. In Proceedings of the IEEE
International Conference on Computer Vision, pages 483—
492,2017. 6

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven visual navigation in in-
door scenes using deep reinforcement learning. In Robotics
and Automation (ICRA), 2017 IEEE International Confer-
ence on, pages 3357-3364. IEEE, 2017. 3

Appenle A. PDDL Domaln :parameters (?a — agent ?1 — location ?0 — object ?r — receptacle)
:precondition (and
(atLocation ?a ?1)

Below is the full PDDL Domain for question answering and (objectAtLocation %0 1)

visual semantic planning. EféR(e‘;‘;‘pl;g{’:“;’:'irg”) (opened ?r))

(not (holdsAny ?a))

(define (domain qa_vsp-task))
(:requirements ceffect (and
cadl (not (inReceptacle ?0 ?r))
) (holds ?a ?0)
(:types (holdsAny ?a)
agent (increase (totalCost) 1)
location)
receptacle)
object
rtype ;3 agent puts down object
otype (:action PutObject
) :parameters (?a — agent ?1 — location ?ot — otype ?0 — object ?r — receptacle)
:precondition (and
(:predicates (atLocation ?a ?1)
(atLocation ?a — agent ?1 — location) (receptacleAtLocation ?r ?1)
(receptacleAtLocation ?r — receptacle ?1 — location) (or (not (openable ?r)) (opened ?r))
(objectAtLocation ?0 — object ?1 — location) (not (full ?r))
(openable ?r — receptacle) (objectType ?0 ?ot)
(opened ?r — receptacle) (holds ?a ?0)
(inReceptacle 20 — object ?r — receptacle))
(checked ?r — receptacle) ceffect (and
(receptacleType ?r — receptacle ?t — rtype) (inReceptacle 20 ?r)
(objectType 20 — object ?t — otype) (full ?r)
(canContain ?t — rtype ?0 — otype) (not (holds ?a ?0))
(holds ?a — agent 20 — object) (not (holdsAny ?a))
(holdsAny ?a — agent) (increase (totalCost) 1)
(full ?r — receptacle))
))
)
(: functions

(distance ?from ?to)
(totalCost)

) Appendix B. PDDL Goal Example

agent goes to receptacle

(:action GotoLocation Below is the goal specification for the question Is there
:parameters (?a — agent ?1Start — location ?1End — location) . th o)
:precondition (atLocation ?a ?1Start) a mug 1in e roomr.
:effect (and . |
(atLocation ?a ?IEnd) (:goa
(not (atLocation ?a ?IStart)) (or e bice
(forall (?r — receptacle) (5’“;‘_5‘(_[-“’ -0 J;[‘-‘Zr
(when (and (receptacleAtLocation ?r ?1End) (:1) jectType 7o MugType))
(or (not (openable ?r)) (opened ?r))) (an-
(checked ?r) (forall (?t — rtype)
) (forall (?r — receptacle)
) (or
(increase (totalCost) (distance ?I1Start ?1End)) (not (and (canContain ?t MUET)’PS)
) (receptacleType ?r ?t)))
) (checked ?r)
)
;; agent opens receptacle)
(:action OpenObject))
:parameters (?a — agent ?1 — location ?r — receptacle) (forall (7re — feceptdde)
:precondition (and (not (opened ?re)))
(atLocation ?a ?1))

(receptacleAtLocation ?r ?1)
(openable ?r)
(forall (?re — receptacle)
(not (opened ?re)))
)
reffect (and
(opened ?r)
(checked ?r)
(increase (totalCost) 1)

)

; agent closes receptacle
caction CloseObject
:parameters (?a — agent ?1 — location ?r — receptacle)
:precondition (and
(atLocation ?a ?1)
(receptacleAtLocation ?r ?1)
(openable ?r)
(opened ?r)
)
reffect (and
(not (opened ?r))
(increase (totalCost) 1)

)

agent picks up object
raction PickupObject

