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Abstract— Robust object tracking requires knowledge and
understanding of the object being tracked: its appearance,
its motion, and how it changes over time. A tracker must
be able to modify its underlying model and adapt to new
observations. We present Re3, a real-time deep object tracker
capable of incorporating temporal information into its model.
Rather than focusing on a limited set of objects or training
a model at test-time to track a specific instance, we pretrain
our generic tracker on a large variety of objects and efficiently
update on the fly; Re3 simultaneously tracks and updates the
appearance model with a single forward pass. This lightweight
model is capable of tracking objects at 150 FPS, while attaining
competitive results on challenging benchmarks. We also show
that our method handles temporary occlusion better than other
comparable trackers using experiments that directly measure
performance on sequences with occlusion.

I. INTRODUCTION

Object tracking plays an important role in many robotics
applications. The main focus in the robotics community
has been on developing trackers for known object types or
specific object instances, such as boxes, hands, people, and
cars, using RGB images or 2D/3D range data such as laser
scans and depth images [2], [31], [34]. This setting has the
advantage that object-specific trackers can be designed or
trained offline and that shape models of the objects are often
available [34]. However, in many scenarios it is not feasible
to pre-specify what kind of objects needs to be tracked.
Examples include drone-based surveillance where a remote
user specifies an object of interest by clicking on a single
image frame [26], or learning from demonstration where a
user picks up an unspecified object and the robot has to keep
track of the object as a task is being demonstrated. In such
settings, a robot must be able to quickly generate an internal
model of the relevant object and continuously update this
model to represent changes in the object’s pose, shape, scale,
and appearance, while being robust to appearance change due
to external factors like occlusions and changes in lighting
conditions.

Instead of assuming a known object model, we focus
on the problem of generic object tracking in RGB video
data, which can be concisely phrased as: given a bounding
box around an arbitrary object at time t, produce bounding
boxes for the object in all future frames [23]. In this paper,
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Fig. 1. Network Structure: Image crop pairs are fed in at each timestep.
Both crops are centered around the object’s location in the previous frame,
and padded to two times the width and height of the object. Before every
pooling stage, we add a skip layer to preserve high-resolution spatial
information. The weights from the two image streams are shared. The output
from the convolutional layers feeds into a single fully connected layer and
an LSTM. The network predicts the top left and bottom right corners of the
new bounding box.

we only consider trackers which operate on streaming data;
trackers cannot modify previous estimates given current
or future observations. This requirement is necessary for
many robotics settings, where a tracker is typically used
in conjunction with another algorithm such as a reactive
trajectory planner.

Current generic 2D image tracking systems predominantly
rely on learning a tracker online. A popular paradigm
for tracking algorithms is tracking-by-detection: training an
object-specific detector, and updating it with the object’s new
appearance at every frame. A disadvantage of this technique
is that updating the tracker often takes a significant amount
of time and computational resources. Conversely, object-
specific trackers such as [31] train detectors offline, but only
function on these few object types.

We propose the Real-time, Recurrent, Regression-based
tracker, or Re3: a fast yet accurate network for generic
object tracking that addresses these disadvantages. Prior
work has shown that given enough examples, a pretrained
deep neural network can learn a robust tracker that functions
on previously unseen objects [4], [18]. However, instead
of freezing the network as in [4], [18] or adjusting the
network parameters via online training [29], Re3 learns to



store and modify relevant object information in the recurrent
parameters. By overcoming the need for any re-training, Re3
efficiently tracks and updates itself simultaneously.

By incorporating information from large collections of
images and videos, our network learns to produce repre-
sentations that capture the important features of the tracked
object. The goal of this process is to teach the network
how any given object is likely to change over time so these
transformations can be embedded directly into the network.
This shifts the computational burden offline, making Re3
extremely fast and computationally cheap during inference,
an important quality for algorithms operating on mobile
robots with limited processing power. Because of our large
variety of training data, we found our pretrained network
can be directly applied to a variety of new environments
such as drone videos, cellphone videos, and robot-mounted
platforms, and due to the low computational cost, Re3 could
be run on embedded systems while remaining real-time.
Our results show that recurrent networks are well suited
for object tracking, as they can be fast, accurate, and robust
to occlusions. Re3 achieves competitive results on multiple
tracking benchmarks, showing especially good performance
during occlusions, all while running at 150 frames per
second.

II. RELATED WORK

Object tracking has been studied in great depth by the
robotics and computer vision community. In many cases,
systems target objects with known 3D models or objects
of a limited set of classes. DART [34] requires a depth
camera and a predefined articulated model, but produces fine-
grained pixelwise labels. Ondruska et al. [30] use planar
laser scans and a recurrent network to track people under
heavy occlusions. Their method succeeds because priors
on likely human trajectories are quite strong. KITTI [13],
a popular vision and robotics benchmark suite, only tests
performance on tracking cars and people. We focus on the
harder problem of tracking arbitrary objects given only an
initial bounding box. Generic object tracking represents a
new challenge for convolutional neural networks. Most deep
learning algorithms rely on having millions of examples to
function, learning invariance to high-level concepts; object
detection algorithms expect the network to learn what a
person looks like, but not to differentiate between two people.
Trackers, on the other hand, are often given only a single
initial example and must specialize in order to track that
specific target object. Because of the difficulty of adapting
traditional deep methods to tracking, deep learning has only
recently started to be used in tracking algorithms. In 2015,
MDNet [29], a deep method, won the The Visual Object
Tracking challenge (VOT) [24] for the first time. The VOT
reports [23], [24], [25] present a succinct overview of many
other generic object trackers. Those most related to ours can
be categorized into three sub-groups: online-trained, offline-
trained, and hybrid trackers.
Online-trained trackers: The most prevalent type of track-
ers operate entirely online, continually learning features
of the object of interest as new frames arrive. This in-
cludes keypoint-based and part-based trackers [10], corre-
lation based methods [19], and direct classification meth-
ods [16]. These methods often rapidly train a classifier to

differentiate between the object of interest, the background,
and possible occluders. Discriminative Scale Space Tracker
(DSST) [6], the winner of the VOT 2014 challenge [23], uses
this approach. DSST learns discriminative correlation filters
for different scale and translation amounts. Because online
trackers must train on frames as they arrive, they tend to
directly trade off speed with model complexity.
Offline-trained trackers: The success of deep learning is of-
ten attributed in part to its ability to utilize massive amounts
of training data better than other machine learning methods.
Offline trackers such as [4] and [18] employ this technique
to great success. Because they are trained entirely offline,
the networks are fast to evaluate at test time, allowing both
methods to operate at faster than real-time speeds. However,
this underscores a large problem with offline trackers: they
do not adapt to what they are seeing. Instead of incorporating
information from an entire track, they learn a similarity
function between pairs of frames. Held et al. [18] use only a
single frame history, meaning any amount of occlusion will
confuse the tracker. Bertinetto et al. [4] rely solely on the
initial frame for appearance information and try to detect the
object in all subsequent frames, meaning large appearance
changes, even if gradual, would be difficult to track. T-
CNN [21] focuses on the detection and tracking problem in
video by finding temporally coherent object detections, but
they do not adapt the model using visual information from
prior detections. Offline trackers’ capabilities are fundamen-
tally limited because they cannot adapt to new information.
Hybrid trackers: Hybrid trackers attempt to solve the
problems with online and offline trackers by taking the best
from both. MDNet, the winner of the VOT 2015 challenge,
trained an image classification network offline, and then
learned a per-object classifier online [29]. Similar approaches
were taken by other top competitors [7]. Still, the complexity
of their online training techniques limited their methods to
taking seconds to process each frame.

Our approach is a hybrid tracker, but prioritizes offline
learning and limits online adaptation to recurrent state
updates. Although we make this trade-off, our method is
substantially different from purely offline trackers because
we use information from previous frames to make future
predictions. This lets us model temporal dependencies be-
tween sequential images and reason about occlusions. Other
recurrent trackers such as [9] and [12] use attention-based
recurrent neural networks. These techniques have only been
shown to work on simple datasets such as tracking MNIST
digits. To our knowledge, we are the first to demonstrate
successful tracking in natural videos using recurrent neural
networks.

III. METHOD

Our tracking pipeline, depicted in Figure 1, consists of
convolutional layers to embed the object appearance, recur-
rent layers to remember appearance and motion information,
and a regression layer to output the location of the object.
We train this network on a combination of real videos and
synthetic data. At test time, unlike MDNet [29], we do
not update the network itself; we instead let the recurrent
parameters represent the tracker state which can be updated
with a single forward pass. In this way, the tracker learns to



use new observations to update the appearance and motion
models, but no extra computational cost is spent on online
training.

A. Object Appearance Embedding

The task of generic object tracking in video sequences
starts with an initial bounding box around an object, with
the goal of keeping track of that object for the remainder
of the video. For each frame of the video, the tracker must
locate the object as well as update its internal state so it
can continue tracking in future frames. A primary subtask in
this framework is translating raw pixels into a higher-level
feature vector representation. Many object trackers, like [10]
rely on extracting appearance information from the object
pixels using hand-crafted features. We choose to learn the
feature extraction directly by using a convolutional pipeline
that can be trained fully end-to-end on a large amount of
data.
Network Inputs: Similar to [18], at each frame, we feed
the network a pair of crops from the image sequence. The
first crop is centered at the object’s location in the previous
image, whereas the second crop is in the same location,
but in the current image. The crops are each padded to
be twice the size of the object’s bounding box to provide
the network with context. This padding offers a reasonable
trade-off between speed, resolution, and search region size.
If the bounding box at frame j had centers (Xj

c , Y
j
c ) and

width and height W j , Hj , both crops would be centered at
(Xj

c , Y
j
c ) with width and height 2W j and 2Hj . By feeding

a pair of crops, the network can directly compare differences
in the two frames and learn how motion affects the image
pixels. Though this method does not guarantee the object to
be in the crop, if our first crop was in the correct location,
the object would have to move more than 1.5 times its
width and height in a single frame to be fully out of the
crop, which is quite unlikely. The crops are warped to be
227 × 227 pixels before being input into the network. We
experimentally determined that preserving the aspect ratio
of the source images hurts performance because it forces
the network to directly regress the aspect ratio rather than
regress changes to the ratio. The pair of image features are
concatenated at the end of the convolutional pipeline (late
fusion) rather than at the beginning to allow the network to
fully separate out the differences between the two images.
Skip Connections: The hierarchical structure of convolu-
tional networks extracts different levels of information from
different layers [43]; the lowest layers of image classification
networks output features like edge maps, whereas the deeper
layers capture high-level concepts such as animal noses,
eyes, and ears [43]. Rather than only using the outputs
from the last layer of the network, we represent the object’s
appearance using low, mid, and high level features. We
use skip connections when spatial resolution decreases to
give the network a richer appearance model. In this way,
the network can differentiate a person (high level concept)
wearing a red (low level concept) shirt from a person wearing
a blue shirt.

The skip connections are each fed through their own
1 × 1 × C convolutional layers where C is chosen to be
less than the number of input channels. This reduces the

dimensionality of the layers with higher spatial resolutions
to keep computational cost low. As the spatial resolution is
halved, C is doubled. All skip connection outputs and the
final output are concatenated together and fed through a final
fully-connected layer to further reduce the dimensionality of
the embedding space that feeds into the recurrent pipeline.

B. Recurrent Specifications
Recurrent networks tend to be more difficult to train than

typical feed-forward networks, often taking more iterations
to converge and requiring more hyperparameter selection.
We present a method of training a recurrent tracking net-
work which translates the image embedding into an output
bounding box while simultaneously updating the internal ap-
pearance and motion model. We also describe techniques that
lead to faster convergence and better-performing networks.
Recurrent Structure: Using the prior work of Greff et
al. [15], we opt for a two-layer, factored LSTM (the visual
features are fed to both layers) with peephole connections.
We find that this outperforms a single layer LSTM even given
a deeper convolutional network and larger embedding space.
The two layer LSTM is likely able to capture more complex
object transformations and remember longer term relation-
ships than the single layer LSTM. The exact formulation is
shown in Equations 1-6 where t represents the frame index,
xt is the current input vector, yt−1 is the previous output
(or recurrent) vector, W, R, and P are weight matrices for
the input, recurrent, and peephole connections respectively,
b is the bias vector, h is the hyperbolic tangent function, σ
is the sigmoid function, and � is point-wise multiplication.
A forward pass produces both an output vector yt, which
is used to regress the current coordinates, and the cell state
ct, which holds important memory information. Both yt and
ct are fed into the following forward pass, allowing for
information to propagate forward in time.

zt = h(Wzx
t +Rzy

t−1 + bz) LSTM input (1)

it = σ(Wix
t +Riy

t−1 +Pic
t−1 + bi) input gate (2)

f t = σ(Wfx
t +Rfy

t−1 +Pfc
t−1 + bf ) forget gate (3)

ct = it � zt + f t � ct−1 cell state (4)

ot = σ(Wox
t +Roy

t−1 +Poc
t + bo) output gate (5)

yt = ot � h(ct) LSTM output (6)

The output and cell state vectors update as the object
appearance changes. Figure 2 shows a t-SNE [27] plot
of the LSTM states our tracker produces for each frame
from the the VOT 2014 [23] videos. Because the LSTM
states are initialized to 0 at the start of each video, the
embeddings of the first few frames from each track are
clustered together. As each video progresses, the LSTM
state is transformed, resulting in many long, thin paths that
follow the ordering of the frames in the original video.
Certain points in the sequences with significant occlusion are
circled, demonstrating that are embedding does not change
drastically during occlusions even though the image pixels
look quite different. The gaps in the sequences are mostly
due to fast movement which tend to cause a rapid appearance
change in the second crop.
Network Outputs: The second LSTM’s outputs are fed into
a fully-connected layer with four output values representing



Fig. 2. t-SNE embedding of LSTM states from VOT 2014 [23] data. The
cell and output states are concatenated together to form the feature vector.
Rather than forming clusters as is typical with t-SNE embeddings, the states
form paths indicating that as the images change during a video, the LSTM
states change in a similar fashion. Circled portions of the embedding indicate
occlusion.
the top left and bottom right corners of the object box in
the crop coordinate frame, as is done in [18]. By regressing
these coordinates, we can directly handle size and aspect
ratio changes. Similar to [18], we use an L1 loss on the
outputs to encourage exact matches the ground truth and
limit potential drift.
Unrolling during training: Recurrent networks generally
take many more iterations to converge than comparable feed-
forward networks. This is likely because the inputs are all fed
in sequentially, and then one or many outputs and losses are
produced. This means the loss must propagate through many
noisy intermediate states, causing the gradients to fluctuate
and often not be useful for convergence. However, for track-
ing, each input is directly paired with an immediate output.
Thus, we can use a training curriculum that begins with
few unrolls, and slowly increases the time horizon that the
network sees to teach it longer-term relationships. Without
the shorter unroll step, the network may take exponentially
longer to train, or may simply never converge. Specifically,
we initially train the network with only two unrolls and a
mini-batch size of 64. After the loss plateaus, we double
the number of unrolls and halve the mini-batch size until a
maximum unroll of 32 timesteps and a mini-batch size of
4. Using this curriculum, we do not find it necessary to clip
gradients.
Learning to Fix Mistakes: Recurrent networks are often
trained by feeding ground truth outputs into the future
timesteps rather than the network’s own predictions [11],
[38]. However, if we always provide the network with
ground-truth crops, at test time it quickly accumulates more
drift than it has ever encountered, and loses track of the
object. To counteract this, we employ a regime that initially

relies on ground-truth crops, but over time the network uses
its own predictions to generate the next crops. We initially
only use the ground truth crops, and as we double the number
of unrolls, we increase the probability of using predicted
crops to first 0.25, then subsequently 0.5 and 0.75. This
method is similar to the one proposed in [3], however we
make our random decision over the whole sequence rather
than at every step independently.

C. Training Procedure
We use a combination of real and synthetic data to train

our deep network. This results in our tracker being able
to work on a large variety of object types, allowing us to
successfully track across multiple datasets.
Training from Video Sequences: We train Re3 on two
large object tracking datasets: the training set from the
ILSVRC 2016 Object Detection from Video dataset (Ima-
genet Video) [33] and the Amsterdam Library of Ordinary
Videos 300++ (ALOV) [35]. In its training set alone, Ima-
genet Video provides 3862 training videos with 1,122,397
images, 1,731,913 object bounding boxes, and 7911 unique
object tracks. This is by far the largest object tracking dataset
we are aware of, however it only contains videos for 30
object categories. ALOV consists of 314 videos. We do
not use the 7 videos that also occur in VOT 2014 [23] in
order to avoid training on the test set. The remaining dataset
comprises 307 videos and 148,319 images, each with a single
object.
Training from Synthetic Sequences: Recently, many deep
methods have supplemented their training sets with simulated
or synthetic data [18], [32]. Due to the large variety of objects
labeled in ‘object detection in image’ datasets, we construct
synthetic videos from still images to show the network new
types of objects. We use images from the Imagenet Object
Detection dataset to fill this role [33]. We discard objects
that are less than 0.12 of the total image area due to lack of
detail, resulting in 478,807 object patches.

To generate simulated data, we randomly sample over all
images for an object to track. We use random patches from
the same image as occluder patches. The full image serves as
the background for the scene. The object, background, and
occluders are taken from the same image in order to keep
our simulated images close to the real image manifold. We
then simulate tracks for the object and occluders, at each
timestep modifying an initial speed, direction, and aspect
ratio with Gaussian noise. This data adds diversity to the
types of objects that the network sees, as categories like
“person,” which are common in many tracking datasets, are
absent in Imagenet Video [33].
Tracking at test time: To generate test-time predictions,
we feed crops to the network from each sequential frame.
After every 32 iterations, we reset the LSTM state. This is
necessary because we train on sequences with a maximum
length of 32 frames, and without this reset, the LSTM
parameters tend to diverge from values the network has seen
before. Rather than resetting the LSTM state to all zeros, we
use the output from the first forward pass. This maintains an
encoding of the tracked object, while allowing us to test on
sequences much longer than the number of training unrolls.
We also notice that the reset helps the model recover from
drifts by using a well-centered crop embedding.



Fig. 3. We compare Re3 to other trackers on the VOT 2014 [23] and VOT 2016 [25] test suites. The size of the point indicates the speed of the tracker.
Those below 3 FPS are enlarged to be visible. Speeds are taken directly from the VOT 2014 [23] and VOT 2016 [25] result reports. The VOT authors
have stated that speed differences between years can be due to different code, different machines, and other confounding factors. For detailed analysis of
other trackers’ performance, please view [23], [25].

Implementation Details: We use Tensorflow [?] to train
and test our networks 1. Unless otherwise noted, we use the
CaffeNet convolutional pipeline initialized with the CaffeNet
pretrained weights for our convolutional layers. The skip
connections occur after “norm1,” “norm2,” and “conv5,” with
16, 32, and 64 channels respectively. Each skip layer has
a PReLU nonlinearity [17]. The embedding fully-connected
layer has 2048 units, and the LSTM layers have 1024
units each. We initialize all new layers with the MSRA
initialization method [17]. We use the the ADAM gradient
optimizer [22] with the default momentum and weight decay
and an initial learning rate of 10−5, which we decrease to
10−6 after 10,000 iterations and continue for approximately
200,000 iterations which takes roughly one week. All layers,
including the pretrained ones, are updated with this learning
rate. During training, we randomly mirror entire tracks with
probability 0.5. All tests were carried out using an Intel
Xeon CPU E5-2696 v4 @ 2.20GHz and an Nvidia Titan
X (Pascal). For timing purposes, we ignore disk read speeds
as they are independent of the tracking algorithm used.

IV. EXPERIMENTS

We compare Re3 to other tracking methods on several
popular tracking datasets in terms of both overall perfor-
mance and robustness to occlusion. On all datasets, we are
among the fastest, most accurate, and most robust trackers.
We initially demonstrate our effectiveness by testing on a
standard tracking benchmark, the Visual Object Tracking
2014 and 2016 (VOT 2014 and VOT 2016) challenges [23],
[25], where we outperform other real-time trackers and are
competitive with other deep methods. Next, we show results
on the ILSVRC 2016 Object Detection from Video chal-
lenge (Imagenet Video) [33] comparing with other real-time
trackers. We then examine our performance during occlusion
with specific experiments on occluded data. Additionally, we
perform an ablation study to understand the contributions of
each part to the overall success of the method. Finally, we

1The Tensorflow code as well as pretrained network weights
are available at https://gitlab.cs.washington.edu/xkcd/
re3-tensorflow.

examine qualitative results on novel video domains such as
drone footage and cellphone video.

A. VOT 2014 and 2016
The VOT 2014 and 2016 object tracking test suite [23],

[25] consists of 25 and 60 videos respectively made with
the explicit purpose of testing trackers. Many of the videos
contain difficulties such as large appearance change, heavy
occlusions, and camera motion. Trackers are compared in
terms of accuracy (how well the predicted box matches with
the ground truth) and robustness (how infrequently a tracker
fails and is reset). More details about these criteria can be
found in [23]. Figure 3 compares Re3 with other trackers
submitted to the VOT 2014 and 2016 challenges [23], [25]
as well as with Held et al [18]. We show the 10 fastest
trackers as well as the 10 most accurate trackers from each
year.

Figure 3 Left shows our full model trained using all of
the available training data. We are among the most accurate
methods overall, and among the most robust of the real-time
methods, likely due to the LSTM’s ability to directly model
temporal changes, allowing the network to adapt without
much computational overhead.

Figure 3 Right compares our results against more modern
trackers on the more difficult VOT 2016 test set [25]. For
training this model, we omit the ALOV data entirely since
there is a large overlap between the two video sets. We
later explore the detrimental effect this has on our network’s
performance in the ablation analysis (model H in Table I).
Re3 is 450x faster than the best methods [8], [25], while
scoring only 20% and 5% lower in terms of relative accuracy
and robustness. On both datasets, Re3 offers an attractive
trade-off of speed, accuracy, and robustness, especially in
time-critical or computationally limited scenarios.

B. Imagenet Video
The Imagenet Video validation set consists of 1309 indi-

vidual tracks and 273,505 images [33]. It is the largest dataset
we test on, and it offers significant insights into the success
cases and failure cases of our tracker. We use Imagenet
Video to evaluate our performance against other open-source

https://gitlab.cs.washington.edu/xkcd/re3-tensorflow
https://gitlab.cs.washington.edu/xkcd/re3-tensorflow


Fig. 4. Various real-time trackers evaluated on the Imagenet Video test
set [33]. Area under the curve (AUC) is shown for each method. We compare
results with [19], [5], [18], [41] with code provided by [40], [14], [18], [39]
respectively.

real-time trackers. Each tracker is initialized with the first
frame of each test sequence and is not reset upon losing
track. Each individual bounding box is evaluated against
the ground truth for that track at various IOU thresholds.
Figure 4 shows our method outperforming other real-time
trackers over all thresholds by a wide margin, though only
our method and GOTURN [18] + Imagenet were trained
with the Imagenet Video training set. We also train a version
of our network without using the Imagenet Video training
data, only using a combination of ALOV [35] and simulated
data. This performs significantly worse, most likely because
LSTMs tend to take more data to train than comparable feed
forward methods and this omits 90% of our real training
data. With sufficient training data, our method outperforms
other methods trained on the same data.

C. Online Object Tracking benchmark

The Online Object Tracking benchmark (OTB) [42] is a
widely used benchmark in tracking literature consisting of
50 challenging tracking videos of various objects. The One
Pass Evaluation (OPE) criteria on OTB is equivalent to the
evaluation we perform on Imagenet Video. In Figure 6, we
show results competitive with the provided baselines from
the OTB website [42], even though we again omit the ALOV
training data.

D. Robustness to Occlusion

We present two additional experiments showing that Re3
performs comparatively well during occlusions. LSTMs can
implicitly learn to handle occlusions because the structure
of an LSTM can ignore information via the input and forget
gates. This contrasts many other methods which assume
all observations are useful, and may update their internal
representation to include the occluder’s appearance. In these
experiments, we compare both the quality of track during

Fig. 5. Expected overlap of various trackers compared between all
frames and occluded frames. The arrow indicates that BDF improves
during occlusion whereas all other methods degrade. For further analysis
of compared trackers, please view [25].

Fig. 6. Evaluation on the OTB benchmark [42]. We examine performance
both overall (left) and during occluded frames (right) using the One Pass
Evaluation (OPE) criterion explained in [42]. The legend shows area under
the curve (AUC) for each method. Relative to other trackers, we suffer a
smaller loss in accuracy due to occlusion. For detailed analysis of other
trackers’ performance, please view [42].

occlusions as well as the difference in performance between
overall scores and scores during occluded frames.

First, we examine our performance on the VOT 2016 test
set [25]. Figure 5 shows the expected overlap measure of
the same trackers from Figure 3 Right. Expected overlap
represents the trackers’ accuracy and robustness as a single
number by performing many trials on subsets of the original
data (more details available in [24]). Each tracker has two
points on the graph: the first for overall expected overlap,
and the second for expected overlap during occlusion. Re3
performs nearly as well as the top performers from VOT
2016 [25] however at a much higher frame rate, and outper-
forms many on occluded frames. Re3’s performance degrades
slightly during occlusions, but many of the other trackers
drop in accuracy by more than 25%. sKCF [36] also barely
changes, and BDF [28] actually improves during occlusions,
however we outperform both of these methods on all frames
and on occluded frames specifically.

We also evaluate how Re3’s performance degrades during
occlusions across various IOU thresholds on OTB [42].
Similar to the previous experiment, Figure 6 compares the
performance of trackers during all frames, and only during



VOT 2014 Imagenet Video
Network Structure and Training Method Speed (FPS) Accuracy # Drops Robustness Average Accuracy # Drops Robustness Average

A Feed Forward Network (GOTURN) [18] 168.77 0.61 35 0.90 0.756 0.55 471 0.95 0.750
B A + Imagenet Video Training 168.77 0.55 41 0.89 0.718 0.56 367 0.96 0.760
C One Layer LSTM 213.27 0.48 67 0.82 0.651 0.49 738 0.92 0.706
D C + Self-training 213.27 0.57 43 0.88 0.726 0.6 450 0.95 0.776
E D + Simulated Data 213.27 0.6 38 0.89 0.747 0.65 359 0.96 0.806
F E + Skip Layers 160.72 0.62 29 0.92 0.769 0.69 320 0.97 0.828
G Full Model (F with two LSTM layers) 149.63 0.66 29 0.92 0.789 0.68 257 0.97 0.826
H Full Model No ALOV 149.63 0.6 28 0.92 0.761 0.71 233 0.97 0.842
I Full Model No Imagenet Video 149.63 0.58 61 0.82 0.700 0.52 1096 0.88 0.700
J Full Model No LSTM Reset 149.63 0.54 47 0.87 0.705 0.61 539 0.94 0.775
K Full Model with GoogleNet [37] conv layers 77.29 0.68 27 0.92 0.802 0.69 274 0.97 0.830

TABLE I
ABLATION STUDY. Average represents the arithmetic mean of accuracy and robustness, providing a single score to each method. Results on VOT

2014 [23] differ slightly from the VOT test suite, as they consider bounding boxes with a rotation angle, and we take the outermost points on these boxes
as the ground truth labels.

occluded frames. Again, we suffer a smaller loss in accuracy
of 7.6 in relative percentage compared to other top methods
(MUSTer [20] 10.2%, MEEM [44] 8.3%, STRUCK [16]
16.1%). The performance on both datasets under occlusion
illustrate that our LSTM-based method offers significant
robustness to occlusion - one of the most difficult challenges
in object tracking.

E. Ablation Study

Table I examines how various changes to the network af-
fect the speed and performance of Re3 on the VOT 2014 and
Imagenet Video test sets [23], [33]. The difference between
model A and C is that model A has three fully-connected
layers with 4096 outputs each, whereas C has one fully-
connected layer with 2048 outputs, and one LSTM layer
with 1024 outputs. Despite the small change, simply adding
an LSTM to an existing tracker without any modification
in the training procedure hinders performance. Self-training,
learning to correct previous mistakes and prevent drift (model
D), is clearly necessary when training a recurrent tracker.
Other modifications tend to add slight improvements in both
accuracy and robustness. At the expense of speed, we can
attain even better results. Model K uses the GoogleNet [37]
architecture to embed the images, but is twice as slow. Model
H, which was trained only on Imagenet Video [33] and
simulated data, shows that by training on a fixed set of
classes, performance improves on those classes but drops
significantly on new objects (VOT 2014 [23]). Model I
illustrates the need for a large training dataset, which seems
especially important in terms of robustness. Model J shows
the importance of resetting the LSTM state, as without the
reset the network is much more affected by both parameter
and model drift.

F. Qualitative Results

We test our network on a variety of important and chal-
lenging never-before-seen domains in order to gauge Re3’s
usefulness to robotic applications. With a single initialization
frame, our network performs remarkably well on challenging
tasks such as shaky cellphone and car dashcam footage of a
moving target, drone footage of multiple people simultane-
ously, and surveillance video of objects as small as 15× 20
pixels. These results are all available in our supplemental
video, https://youtu.be/RByCiOLlxug. We also in-
clude excerpts of our performance on challenging frames
from Imagenet Video [33] in Figure 7.

V. CONCLUSION

In this paper, we presented the first algorithm that uses a
recurrent neural network to track generic objects in a variety
of natural scenes and situations. Recurrent models offer a
new, compelling method of tracking due to their ability to
learn from many examples offline and to quickly update
online when tracking a specific object. Because they are
end-to-end-trainable, recurrent networks can directly learn
robustness to complex visual phenomena such as occlusion
and appearance change. Our method demonstrates increased
accuracy, robustness, and speed over comparable trackers,
especially during occlusions. We showed how to efficiently
and effectively train a recurrent network to learn from labeled
videos and synthetic data. Ultimately we have shown that
recurrent neural networks have great potential in the fast
generic object tracking domain, and can be beneficial in
robotics applications that need real-time performance on a
limited computational budget.
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