
Visual Semantic Planning using Deep Successor Representations

Yuke Zhu∗3 Daniel Gordon∗∗4 Eric Kolve1 Dieter Fox4

Li Fei-Fei3 Abhinav Gupta1,2 Roozbeh Mottaghi1 Ali Farhadi1,4
1Allen Institute for Artificial Intelligence 2Carnegie Mellon University

3Stanford University 4University of Washington

Abstract

A crucial capability of real-world intelligent agents is
their ability to plan a sequence of actions to achieve their
goals in the visual world. In this work, we address the prob-
lem of visual semantic planning: the task of predicting a
sequence of actions from visual observations that transform
a dynamic environment from an initial state to a goal state.
Doing so entails knowledge about objects and their affor-
dances, as well as actions and their preconditions and ef-
fects. We propose learning these through interacting with a
visual and dynamic environment. Our proposed solution in-
volves bootstrapping reinforcement learning with imitation
learning. To ensure cross task generalization, we develop a
deep predictive model based on successor representations.
Our experimental results show near optimal results across a
wide range of tasks in the challenging THOR environment.
The supplementary video can be accessed at the following
link: https://goo.gl/vXsbQP.

1. Introduction

Humans demonstrate levels of visual understanding that
go well beyond current formulations of mainstream vision
tasks (e.g. object detection, scene recognition, image seg-
mentation). A key element to visual intelligence is the abil-
ity to interact with the environment and plan a sequence of
actions to achieve specific goals; This, in fact, is central to
the survival of agents in dynamic environments [2, 37].

Visual semantic planning, the task of interacting with
a visual world and predicting a sequence of actions that
achieves a desired goal, involves addressing several chal-
lenging problems. For example, imagine the simple task
of putting the bowl in the microwave in the
visual dynamic environment depicted in Figure 1. A suc-
cessful plan involves first finding the bowl, navigating to it,
then grabbing it, followed by finding and navigating to the
microwave, opening the microwave, and finally putting the

∗indicates equal contribution.

3

navigate to bowl
1

2

pick up bow
l

navigate to microwave

open microwave

5

put bowl in microwave

Initial State

Overhead view of Visual Dynamic Environment Task: Put bowl in microwave

4

Figure 1. Given a task and an initial configuration of a scene, our
agent learns to interact with the scene and predict a sequence of
actions to achieve the goal based on visual inputs.

bowl in the microwave.
The first challenge in visual planning is that performing

each of the above actions in a visual dynamic environment
requires deep visual understanding of that environment, in-
cluding the set of possible actions, their preconditions and
effects, and object affordances. For example, to open a mi-
crowave an agent needs to know that it should be in front
of the microwave, and it should be aware of the state of
the microwave and not try to open an already opened mi-
crowave. Long explorations that are required for some tasks
imposes the second challenge. The variability of visual ob-
servations and possible actions makes naı̈ve exploration in-
tractable. To find a cup, the agent might need to search sev-
eral cabinets one by one. The third challenge is emitting a
sequence of actions such that the agent ends in the goal state
and the effects of the preceding actions meet the precondi-
tions of the proceeding ones. Finally, a satisfactory solution
to visual planning should enable cross task transfer; previ-
ous knowledge about one task should make it easier to learn
the next one. This is the fourth challenge.

In this paper, we address visual semantic planning as a
policy learning problem. We mainly focus on high-level
actions and do not take into account the low-level details of
motor control and motion planning. Visual Semantic Plan-

https://goo.gl/vXsbQP

ning (VSP) is the task of predicting a sequence of semantic
actions that moves an agent from a random initial state in a
visual dynamic environment to a given goal state.

To address the first challenge, one needs to find a way
to represent the required knowledge of objects, actions,
and the visual environment. One possible way is to learn
these from still images or videos [12, 51, 52]. But we ar-
gue that learning high-level knowledge about actions and
their preconditions and effects requires an active and pro-
longed interaction with the environment. In this paper, we
take an interaction-centric approach where we learn this
knowledge through interacting with the visual dynamic en-
vironment. Learning by interaction on real robots has lim-
ited scalability due to the complexity and cost of robotics
systems [39, 40, 49]. A common treatment is to use
simulation as mental rehearsal before real-world deploy-
ment [4, 21, 26, 53, 54]. For this purpose, we use the
THOR framework [54], extending it to enable interactions
with objects, where an action is specified as its pre- and
post-conditions in a formal language.

To address the second and third challenges, we cast VSP
as a policy learning problem, typically tackled by reinforce-
ment learning [11, 16, 22, 30, 35, 46]. To deal with the large
action space and delayed rewards, we use imitation learn-
ing to bootstrap reinforcement learning and to guide explo-
ration. To address the fourth challenge of cross task gen-
eralization [25], we develop a deep predictive model based
on successor representations [7, 24] that decouple environ-
ment dynamics and task rewards, such that knowledge from
trained tasks can be transferred to new tasks with theoretical
guarantees [3].

In summary, we address the problem of visual semantic
planning and propose an interaction-centric solution. Our
proposed model obtains near optimal results across a spec-
trum of tasks in the challenging THOR environment. Our
results also show that our deep successor representation of-
fers crucial transferability properties. Finally, our qualita-
tive results show that our learned representation can encode
visual knowledge of objects, actions, and environments.

2. Related Work

Task planning. Task-level planning [10, 13, 20, 47, 48]
addresses the problem of finding a high-level plan for per-
forming a task. These methods typically work with high-
level formal languages and low-dimensional state spaces. In
contrast, visual semantic planning is particularly challeng-
ing due to the high dimensionality and partial observability
of visual input. In addition, our method facilitates gener-
alization across tasks, while previous methods are typically
designed for a specific environment and task.

Perception and interaction. Our work integrates percep-
tion and interaction, where an agent actively interfaces with

the environment to learn policies that map pixels to actions.
The synergy between perception and interaction has drawn
an increasing interest in the vision and robotics community.
Recent work has enabled faster learning and produced more
robust visual representations [1, 32, 39] through interaction.
Some early successes have been shown in physical under-
standing [9, 26, 28, 36] by interacting with an environment.

Deep reinforcement learning. Recent work in reinforce-
ment learning has started to exploit the power of deep neu-
ral networks. Deep RL methods have shown success in sev-
eral domains such as video games [35], board games [46],
and continuous control [30]. Model-free RL methods (e.g.,
[30, 34, 35]) aim at learning to behave solely from ac-
tions and their environment feedback; while model-based
RL approaches (e.g., [8, 44, 50]) also estimate a envi-
ronment model. Successor representation (SR), proposed
by Dayan [7], can be considered as a hybrid approach of
model-based and model-free RL. Barreto et al. [3] derived
a bound on value functions of an optimal policy when trans-
ferring policies using successor representations. Kulkarni et
al. [24] proposed a method to learn deep successor features.
In this work, we propose a new SR architecture with signifi-
cantly reduced parameters, especially in large action spaces,
to facilitate model convergence. We propose to first train
the model with imitation learning and fine-tune with RL. It
enables us to perform more realistic tasks and offers signif-
icant benefits for transfer learning to new tasks.

Learning from demonstrations. Expert demonstrations
offer a source of supervision in tasks which must usually be
learned with copious random exploration. A line of work in-
terleaves policy execution and learning from expert demon-
stration that has achieved good practical results [6, 43].
Recent works have employed a series of new techniques
for imitation learning, such as generative adversarial net-
works [19, 29], Monte Carlo tree search [17] and guided
policy search [27], which learn end-to-end policies from
pixels to actions.

Synthetic data for visual tasks. Computer games and
simulated platforms have been used for training percep-
tual tasks, such as semantic segmentation [18], pedes-
trian detection [33], pose estimation [38], and urban driv-
ing [5, 41, 42, 45]. In robotics, there is a long history of
using simulated environments for learning and testing be-
fore real-world deployment [23]. Several interactive plat-
forms have been proposed for learning control with visual
inputs [4, 21, 26, 53, 54]. Among these, THOR [54] pro-
vides high-quality realistic indoor scenes. Our work ex-
tends THOR with a new set of actions and the integration
of a planner.

Look Down

Pick Up
egg

Open
microwave

Navigate to
microwave

Close
fridge

Put
tomato

Before After Before After

Look Up

Figure 2. Example images that demonstrate the state changes be-
fore and after an object interaction from each of the six action
types in our framework. Each action changes the visual state and
certain actions may enable further interactions such as opening the
fridge before taking an object from it.

3. Interactive Framework

To enable interactions with objects and with the environ-
ment, we extend the THOR framework [54], which has been
used for learning visual navigation tasks. Our extension in-
cludes new object states, and a discrete description of the
scene in a planning language [13].

3.1. Scenes

In this work, we focus on kitchen scenes, as they allow
for a variety of tasks with objects from many categories.
Our extended THOR framework consists of 10 individual
kitchen scenes. Each scene contains an average of 53 dis-
tinct objects with which the agent can interact. The scenes
are developed using the Unity 3D game engine.

3.2. Objects and Actions

We categorize the objects by their affordances [15], i.e.,
the plausible set of actions that can be performed. For the
tasks of interest, we focus on two types of objects: 1) items
that are small objects (mug, apple, etc.) which can be picked
up, held, and moved by the agent to various locations in the
scene, and 2) receptacles that are large objects (table, sink,
etc.) which are stationary and can hold a fixed capacity of
items. A subset of receptacles, such as fridges and cabinets,
are containers. These containers have doors that can be
opened and closed. The agent can only put an item in a
container when it is open. We assume that the agent can
hold at most one item at any point. We further define the
following actions to interact with the objects:

1. Navigate {receptacle}: moving from the current lo-
cation of the agent to a location near the receptacle;

2. Open {container}: opening the door of a container in
front of an agent;

3. Close {container}: closing the door of a container in
front of an agent;

4. Pick Up {item}: picking up an item in field of view;
5. Put {receptacle}: putting a held item in the receptacle;

6. Look Up and Look Down: tilting the agent’s gaze 30
degrees up or down.

In summary, we have six action types, each taking a cor-
responding type of action arguments. The combination of
actions and arguments results in a large action set of 80 per
scene on average. Fig. 2 illustrates example scenes and the
six types of actions in our framework. Our definition of ac-
tion space makes two important abstractions to make learn-
ing tractable: 1) it abstracts away from navigation, which
can be tackled by a subroutine using existing methods such
as [54]; and 2) it allows the model to learn with seman-
tic actions, abstracting away from continuous motions, e.g.,
the physical movement of a robot arm to grasp an object. A
common treatment for this abstraction is to “fill in the gaps”
between semantic actions with callouts to a continuous mo-
tion planner [20, 47]. It is evident that not all actions can be
performed in every situation. For example, the agent can-
not pick up an item when it is out of sight, or put a tomato
into fridge when the fridge door is closed. To address these
requirements, we specify the pre-conditions and effects of
actions. Next we introduce an approach to declaring them
as logical rules in a planning language. These rules are only
encoded in the environment but not exposed to the agent.
Hence, the agent must learn them through interaction.

3.3. Planning Language

The problem of generating a sequence of actions that
leads to the goal state has been formally studied in the field
of automated planning [14]. Planning languages offer a
standard way of expressing an automated planning problem
instance, which can be solved by an off-the-shelf planner.
We use STRIPS [13] as the planning language to describe
our visual planning problem.

In STRIPS, a planning problem is composed of a de-
scription of an initial state, a specification of the goal
state(s), and a set of actions. In visual planning, the initial
state corresponds to the initial configuration of the scene.
The specification of the goal state is a boolean function that
returns true on states where the task is completed. Each ac-
tion is defined by its precondition (conditions that must be
satisfied before the action is performed) and postcondition
(changes caused by the action). The STRIPS formulation
enables us to define the rules of the scene, such as object
affordances and causality of actions.

4. Our Approach

We first outline the basics of policy learning in Sec. 4.1.
Next we formulate the visual semantic planning problem as
a policy learning problem and describe our model based on
successor representation. Later we propose two protocols
of training this model using imitation learning (IL) and rein-
forcement learning (RL). To this end, we use IL to bootstrap

openaction type
one-hot

visual
observation

s

a
cabinetaction argument

one-hot

a,s

a,s

w

ra,s

Qa,s

immediate
reward

Q value

: dot product

: convolution layer

: fully-connected layer

internal state
one-hot inventory

state-action
feature

successor
feature

reward
predictor

vector

Figure 3. An overview of the network architecture of our successor representation (SR) model. Our network takes in the current state as
well as a specific action and predicts an immediate reward ra,s as well as a discounted future reward Qa,s, performing this evaluation for
each action. The learned policy π takes the argmax over all Q values as its chosen action.

our model and use RL to further improve its performance.

4.1. Successor Representation

We formulate the agent’s interactions with an environ-
ment as a Markov Decision Process (MDP), which can be
specified by a tuple (S,A, p, r, γ). S and A are the sets of
states and actions. For s ∈ S and a ∈ A, p(s′|s, a) de-
fines the probability of transiting from the state s to the next
state s′ ∈ S by taking action a. r(s, a) is a real-value func-
tion that defines the expected immediate reward of taking
action a in state s. For a state-action trajectory, we define
the future discounted return R =

∑∞
i=0 γ

ir(si, ai), where
γ ∈ [0, 1] is called the discount factor, which trades off the
importance of immediate rewards versus future rewards.

A policy π : S → A defines a mapping from states
to actions. The goal of policy learning is to find the op-
timal policy π∗ that maximizes the future discounted re-
turn R starting from state s0 and following the policy π∗.
Instead of directly optimizing a parameterized policy, we
take a value-based approach. We define a state-action value
function Qπ : S ×A → R under a policy π as

Qπ(s, a) = Eπ[R|s0 = s, a0 = a], (1)

i.e., the expected episode return starting from state s, taking
action a, and following policy π. The Q value of the optimal
policy π∗ obeys the Bellman equation [49]:

Qπ
∗
(s, a) = Eπ

∗
[r(s, a) + γmax

a′
Q(s′, a′)] (2)

In deep Q networks [35], Q functions are approximated by a
neural networkQ(s, a|θ), and can be trained by minimizing

the `2-distance between both sides of the Bellman equation
in Eq. (2). Once we learn Qπ

∗
, the optimal action at state s

can be selected by a∗ = argmaxaQ
π∗(s, a).

Successor representation (SR), proposed by Dayan [7],
uses a similar value-based formulation for policy learn-
ing. It differs from traditional Q learning by factoring the
value function into a dot product of two components: a re-
ward predictor vector w and a predictive successor feature
ψ(s, a). To derive the SR formulation, we start by factoring
the immediate rewards such that

r(s, a) = φ(s, a)Tw, (3)

where φ(s, a) is a state-action feature. We expand Eq. (1)
using this reward factorization:

Qπ(s, a) = Eπ[
∞∑
i=0

γir(si, ai)|s0 = s, a0 = a]

= Eπ[
∞∑
i=0

γiφ(si, ai)
Tw|s0 = s, a0 = a]

= Eπ[
∞∑
i=0

γiφ(si, ai)|s0 = s, a0 = a]Tw

= ψπ(s, a)Tw (4)

We refer to ψ(s, a)π = Eπ[
∑∞
i=0 γ

iφs,a|s0 = s, a0 = a] as
the successor features of the pair (s, a) under policy π.

Intuitively, the successor feature ψπ(s, a) summarizes
the environment dynamics under a policy π in a state-action
feature space, which can be interpreted as the expected fu-
ture “feature occupancy”. The reward predictor vector w

induces the structure of the reward functions, which can be
considered as an embedding of a task. Such decompositions
have been shown to offer several advantages, such as being
adaptive to changes in distal rewards and apt to option dis-
covery [24]. A theoretical result derived by Barreto et al.
implies a bound on performance guarantee when the agent
transfers a policy from a task t to a similar task t′, where
task similarity is determined by the `2-distance of the cor-
responding w vectors between these two tasks t and t′ [3].
Successor representation thus provides a generic framework
for policy transfer in reinforcement learning.

4.2. Our Model

We formulate the problem of visual semantic planning
as a policy learning problem. Formally, we denote a task by
a Boolean function t : S → {0, 1}, where a state s com-
pletes the task t iff t(s) = 1. The goal is to find an optimal
policy π∗, such that given an initial state s0, π∗ generates
a state-action trajectory T = {(si, ai) | i = 0 . . . T} that
maximizes the sum of immediate rewards

∑T−1
i=0 r(si, ai),

where t(s0...T−1) = 0 and t(sT) = 1.
We parameterize such a policy using the successor rep-

resentation (SR) model from the previous section. We de-
velop a new neural network architecture to learn φ, ψ and
w. The network architecture is illustrated in Fig. 3. In
THOR, the agent’s observations come from a first-person
RGB camera. We also pass the agent’s internal state as
input, expressed by one-hot encodings of the held object
in its inventory. The action space is described in Sec. 3.2.
We start by computing embedding vectors for the states and
the actions. The image is passed through a 3-layer con-
volutional encoder, and the internal state through a 2-layer
MLP, producing a state embedding µs = f(s; θcnn, θint).
The action a = [atype, aarg] is encoded as one-hot vec-
tors and passed through a 2-layer MLP encoder that pro-
duces an action embedding µa = g(atype, aarg; θmlp). We
fuse the state and action embeddings and generate the state-
action feature φs,a = h(µs, µa; θr) and the successor fea-
ture ψs,a = m(µs, µa; θq) in two branches. The network
predicts the immediate reward rs,a = φTs,aw and the Q
value under the current policy Qs,a = ψTs,aw using the de-
composition from Eq. (3) and (4).

4.3. Imitation Learning

Our SR-based policy can be learned in two fashions.
First, it can be trained by imitation learning (IL) under the
supervision of the trajectories of an optimal planner. Sec-
ond, it can be learned by trial and error using reinforce-
ment learning (RL). In practice, we find that the large action
space in THOR makes RL from scratch intractable due to
the challenge of exploration. The best model performance is
produced by IL bootstrapping followed by RL fine-tuning.

Input Remapping

From planner trajectory to training data

{(s0,a0), (s1,a1), (s2,a2), …, (sT,∅)}

{(, a0), (, a1), (, a2), …, (, ∅)}sT

s2

s3

input remapping

Action: open (microwave)

Preconditions: near (microwave), is_closed (microwave)

Postconditions: is_open (microwave)

s0

s1

a0

Planning

Figure 4. We use a planner to generate a trajectory from an ini-
tial state-action pair (s0, a0) to a goal state sT . We describe each
scene in a STRIPS-based planning language, where actions are
specified by their pre- and post-conditions (see Sec. 3.3). We per-
form input remapping, illustrated in the blue box, to obtain the
image-action pairs from the trajectory as training data. After per-
forming an action, we update the plan and repeat.

Given a task, we generate a state-action trajectory:

T = {(s0, a0), {(s1, a1), . . . , (sT−1, aT−1), (sT , ∅)} (5)

using the planner from the initial state-action pair (s0, a0)
to the goal state sT (no action is performed at terminal
states). This trajectory is generated on a low-dimensional
state representation in the STRIPS planner (Sec. 3.3). Each
low-dimensional state corresponds to an RGB image, i.e.,
the agent’s visual observation. During training, we perform
input remapping to supervise the model with image-action
pairs rather than feeding the low-dimensional planner states
to the network. To fully explore the state space, we take
planner actions as well as random actions off the optimal
plan. After each action, we recompute the trajectory. This
process of generating training data from a planner is illus-
trated in Fig. 4. Each state-action pair is associated with a
true immediate reward r̂s,a. We use the mean squared loss
function to minimize the error of reward prediction:

Lr =
1

T

T−1∑
i=0

(r̂s,a − φTs,aw)2. (6)

Following the REINFORCE rule [49], we use the dis-
counted return along the trajectory T as an unbiased esti-
mate of the true Q value: Q̂s,a ≈

∑T−1
i=0 γir̂s,a. We use the

mean squared loss to minimize the error of Q prediction:

LQ = (Q̂s,a − ψTs,aw)2 (7)

The final loss on the planner trajectory T is the sum of the
reward loss and the Q loss: LT = Lr+LQ. Using this loss
signal, we train the whole SR network on a large collection
of planner trajectories starting from random initial states.

4.4. Reinforcement Learning

When training our SR model using RL, we can still use
the mean squared loss in Eq. (6) to supervise the learning

of reward prediction branch for φ and w. However, in ab-
sence of expert trajectories, we would need an iterative way
to learn the successor features ψ. Rewriting the Bellman
equation in Eq. (2) with the SR factorization, we can obtain
an equality on φ and ψ:

ψπ
∗
(s, a) = Eπ

∗
[φ(s, a) + γψ(s′, a′)] (8)

where a′ = argmaxa ψ(s
′, a)Tw. Similar to DQN [35],

we minimize the `2-loss between both sides of Eq. (8):

LSR = Eπ[(φs,a + γψs′,a′ − ψπs,a)2] (9)

We use a similar procedure to Kulkarni et al. [24] to train
our SR model. The model alternates training between the
reward branch and the SR branch. At each iteration, a mini-
batch is randomly drawn from a replay buffer of past expe-
riences [35] to perform one SGD update.

4.5. Transfer with Successor Features

A major advantage of successor features is its ability
to transfer across tasks by exploiting the structure shared
by the tasks. Given a fixed state-action representation φ,
let Mφ be the set of all possible MDPs induced by φ and
all instantiations of the reward prediction vectors w. As-
sume that π∗i is the optimal policy of the i-th task in the set
{Mi ∈ Mφ|i = 1, . . . n}. Let Mn+1 to be a new task. We
denote Qπ

∗
i
n+1 as the value function of executing the optimal

policy of the task Mi on the new task Mn+1, and Q̃π
∗
i
n+1 as

an approximation ofQπ
∗
i
n+1 by our SR model. Given a bound

on the approximations such that

|Qπ
∗
i
n+1(s, a)−Q̃

π∗i
n+1(s, a)| ≤ ε ∀s ∈ S, a ∈ A, i = 1, . . . , n,

we define a policy π′ for the new task Mn+1 using Q̃1,...,n,
where π′(s) = argmaxamaxi Q̃

π∗i
n+1(s, a). Theorem 2 in

Barreto et al. [3] implies a bound of the gap between value
functions of the optimal policy π∗n+1 and the policy π′:

Q
π∗n+1

n+1 (s, a)−Qπ
′

n+1(s, a) ≤
2φm
1− γ

(min
i
||wi−wn+1||+ε),

where φm = maxs,a ||φ(s, a)||. This result serves the the-
oretical foundation of policy transfer in our SR model. In
practice, when transferring to a new task while the scene
dynamics remain the same, we freeze all model parameters
except the single vector w. This way, the policy of the new
task can be learned with substantially higher sample effi-
ciency than training a new network from scratch.

4.6. Implementation Details

We feed a history of the past four observations, converted
to grayscale, to account for the agent’s motions. We use a
time cost of −0.01 to encourage shorter plans and a task

completion reward of 10.0. We train our model with imita-
tion learning for 500k iterations with a batch size of 32, and
a learning rate of 1e-4. We also include the successor loss in
Eq. (9) during imitation learning, which helps learn better
successor features. We subsequently fine-tune the network
with reinforcement learning with 10,000 episodes.

5. Experiments
We evaluate our model using the extended THOR frame-

work on a variety of household tasks. We compare our
method against standard reinforcement learning techniques
as well as with non-successor based deep models. The tasks
compare the different methods’ abilities to learn across
varying time horizons. We also demonstrate the SR net-
work’s ability to efficiently adapt to new tasks. Finally, we
show that our model can learn a notion of object affordance
by interacting with the scene.

5.1. Quantitative Evaluation

We examine the effectiveness of our model and baseline
methods on a set of tasks that require three levels of plan-
ning complexity in terms of optimal plan length.

Experiment Setup We explore the two training protocols
introduced in Sec. 4 to train our SR model:

1. RL: we train the model solely based on trial and error,
and learn the model parameters with RL update rules.

2. IL: we use the planner to generate optimal trajectories
starting from a large collection of random initial state-
action pairs. We use the imitation learning methods to
train the networks using supervised losses.

Empirically, we find that training with reinforcement
learning from scratch cannot handle the large action space.
Thus, we report the performance of our SR model trained
with imitation learning (SR IL) as well as with additional
reinforcement learning fine-tuning (SR IL + RL).

We compare our SR model with the state-of-the-art deep
RL model, A3C [34], which is an advantage-based actor-
critic method that allows the agent to learn from multiple
copies of simulation while updating a single model in an
asynchronous fashion. A3C establishes a strong baseline
for reinforcement learning. We further use the same archi-
tecture to obtain two imitation learning (behavior cloning)
baselines. We use the same A3C network structure to train
a softmax classifier that predicts the planner actions given
an input. The network predicts both the action types (e.g.,
Put) and the action arguments (e.g., apple). We call this
baseline CLS-MLP. We also investigate the role of memory
in these models. To do this, we add an extra LSTM layer to
the network before action outputs, called CLS-LSTM. We
also include simple agents that take random actions and take
random valid actions at each time step.

Easy Medium Hard
Success Rate Mean (σ) Episode Length Success Rate Mean (σ) Episode Length Success Rate Mean (σ) Episode Length

Random Action 1.00 696.33 (744.71) 0.00 - 0.04 2827.08 (927.84)
Random Valid Action 1.00 64.03 (68.04) 0.02 3897.50 (548.50) 0.36 2194.83 (1401.72)
A3C [34] 0.96 101.12 (151.04) 0.00 - 0.04 2674.29 (4370.40)
CLS-MLP 1.00 2.42 (0.70) 0.65 256.32 (700.78) 0.65 475.86 (806.42)
CLS-LSTM 1.00 2.86 (0.37) 0.80 314.05 (606.25) 0.66 136.94 (523.60)
SR IL (ours) 1.00 2.70 (1.06) 0.80 32.32 (29.22) 0.65 34.25 (63.81)
SR IL + RL (ours) 1.00 2.57 (1.04) 0.80 26.56 (3.85) - -
Optimal planner 1.00 2.36 (1.04) 1.00 12.10 (6.16) 1.00 14.13 (9.09)

Table 1. Results of evaluating the model on the easy, medium, and hard tasks. For each task, we evaluate how many out of the 100 episodes
were completed (success rate) and the mean and standard deviation for successful episode lengths. The numbers in parentheses show the
standard deviations. We do not fine-tune our SR IL model for the hard task.

Levels of task difficulty We evaluate all of the models
with three levels of task difficulty based on the length of the
optimal plans and the source of randomization:

1. Level 1 (Easy): Navigate to a container and
toggle its state. A sample task would be go to
the microwave and open it if it is
closed, close it otherwise. The initial
location of the agent and all container states are
randomized. This task requires identifying object
states and reasoning about action preconditions.

2. Level 2 (Medium): Navigate to multiple receptacles,
collect items, and deposit them in a receptacle. A
sample task here is pick up three mugs from
three cabinets and put them in the
sink. Here we randomize the agent’s initial location,
while the item locations are fixed. This task requires a
long trajectory of correct actions to complete the goal.

3. Level 3 (Hard): Search for an item and put it in a
receptacle. An example task is find the apple
and put it in the fridge. We randomize
the agent’s location as well as the location of all items.
This task is especially difficult as it requires longer-
term memory to account for partial observability, such
as which cabinets have previously been checked.

We evaluate all of the models on 10 easy tasks, 8 medium
tasks, and 7 hard tasks, each across 100 episodes. Each
episode terminates when a goal state is reached. We con-
sider an episode fails if it does not reach any goal state
within 5,000 actions. We report the episode success rate
and mean episode length as the performance metrics. We
exclude these failed episodes in the mean episode length
metric. For the easy and medium tasks, we train the imita-
tion learning models to mimic the optimal plans. However
for the hard tasks, imitating the optimal plan is infeasible, as
the location of the object is uncertain. In this case, the tar-
get object is likely to hide in a cabinet or a fridge which the
agent cannot see. Therefore, we train the models to imitate
a plan which searches for the object from all the receptacles
in a fixed order. For the same reason, we do not perform RL
fine-tuning for the hard tasks.

Figure 5. We compare updating w with retraining the whole net-
work for new hard tasks in the same scene. By using successor
features, we can quickly learn an accurate policy for the new item.
Bar charts correspond to the episode success rates, and line plots
correspond to successful action rate.

Table 1 summarizes the results of these experiments.
Pure RL-based methods struggle with the medium and hard
tasks because the action space is so large that naı̈ve explo-
ration rarely, if ever, succeeds. Comparing CLS-MLP and
CLS-LSTM, adding memory to the agent helps improving
success rate on medium tasks as well as completing tasks
with shorter trajectories in hard tasks. Overall, the SR meth-
ods outperform the baselines across all three task difficul-
ties. Fine-tuning the SR IL model with reinforcement learn-
ing further reduces the number of steps towards the goal.
More qualitative results can be found in the video.1

5.2. Task Transfer

One major benefit of the successor representation de-
composition is its ability to transfer to new tasks while only
retraining the reward prediction vector w, while freezing
the successor features. We examine the sample efficiency of
adapting a trained SR model on multiple novel tasks in the
same scene. We examine policy transfer in the hard tasks,
as the scene dynamics of the searching policy retains, even
when the objects to be searched vary. We evaluate the speed
at which the SR model converges on a new task by fine-

1Link to supplementary video: https://goo.gl/vXsbQP

https://goo.gl/vXsbQP

Ran
do

m
A3C

CLS
-M

LP

CLS
-LS

TM
SR (IL

)

SR (IL
+R

L)
0

20

40

60

80

100

su
cc

es
sf

ul
 a

ct
io

n
ra

te
 (%

)

Easy
Medium
Hard

Figure 6. We compare the different models’ likelihood of per-
forming a successful action during execution. A3C suffers from
the large action space due to naı̈ve exploration. Imitation learn-
ing models are capable of differentiating between successful and
unsuccessful actions because the supervised loss discourages the
selection of unsuccessful actions.

tuning the w vector versus training the model from scratch.
We take a policy for searching a bowl in the scene and sub-
stituting four new items (lettuce, egg, container, and apple)
in each new task. Fig. 5 shows the episode success rates
(bar chart) and the successful action rate (line plot). By fine-
tuning w, the model quickly adapts to new tasks, yielding
both high episode success rate and successful action rate. In
contrast, the model trained from scratch takes substantially
longer to converge. We also experiment with fine-tuning the
entire model, and it suffers from similar slow convergence.

5.3. Learning Affordances

An agent in an interactive environment needs to be able
to reason about the causal effects of actions. We expect our
SR model to learn the pre- and post-conditions of actions
through interaction, such that it develops a notion of affor-
dance [15], i.e., which actions can be performed under a
circumstance. In the real world, such knowledge could help
prevent damages to the agent and the environment caused
by unexpected or invalid actions.

We first evaluate each network’s ability to implicitly
learn affordances when trained on the tasks in Sec. 5.1. In
these tasks, we penalize unnecessary actions with a small
time penalty, but we do not explicitly tell the network which
actions succeed and which fail. Fig. 6 illustrates that a stan-
dard reinforcement learning method cannot filter out unnec-
essary actions especially given delayed rewards. Imitation
learning methods produce significantly fewer failed actions
because they can directly evaluate whether each action gets
them closer to the goal state.

We also analyze the successor network’s capability of ex-
plicitly learning affordances. We train our SR model with
reinforcement learning, by executing a completely random

Figure 7. Visualization of a t-SNE [31] embedding of the state-
action vector φs,a for a random set of state-action pairs. Success-
ful state-action pairs are shown in green, and unsuccessful pairs in
orange. The two blue circles highlight portions of the embedding
with very similar images but different actions. The network can
differentiate successful pairs from unsuccessful ones.

policy in the scene. We define the immediate reward of is-
suing a successful action as +1.0 and an unsuccessful one
as −1.0. The agent learns in 10,000 episodes. Fig. 7 shows
a t-SNE [31] visualization of the state-action features φs,a.
We see that the network learns to cluster successful state ac-
tion pairs (shown in green) separate from unsuccessful pairs
(orange). The network achieves an ROC-AUC of 0.91 on
predicting immediate rewards over random state-action ac-
tions, indicating that the model can differentiate successful
and unsuccessful actions by performing actions and learn-
ing from their outcomes.

6. Conclusions
In this paper, we argue that visual semantic planning is

an important next task in computer vision. Our proposed
solution shows promising results in predicting a sequence
of actions that change the current state of the visual world
to a desired goal state. We have examined several differ-
ent tasks with varying degrees of difficulty and show that
our proposed model based on deep successor representa-
tions achieves near optimal results in the challenging THOR
environment. We also show promising cross-task knowl-
edge transfer results, a crucial component of any generaliz-
able solution. Our qualitative results show that our learned
successor features encode knowledge of object affordances,
and action pre-conditions and post-effects. Our next steps
involve exploring knowledge transfer from THOR to real-
world environments as well as examining the possibilities
of more complicated tasks with a richer set of actions.

Acknowledgements: This work is in part supported by ONR N00014-
13-1-0720, ONR MURI N00014-16-1-2007, NSF IIS-1338054, NSF-
1652052, NRI-1637479, NSF IIS-1652052, a Siemens grant, the Intel Sci-
ence and Technology Center for Pervasive Computing (ISTC-PC), Allen
Distinguished Investigator Award, and the Allen Institute for Artificial In-
telligence.

References
[1] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-
itive physics. arXiv, 2016. 2

[2] M. L. Anderson. Embodied cognition: A field guide. Artifi-
cial intelligence, 2003. 1

[3] A. Barreto, R. Munos, T. Schaul, and D. Silver. Successor
features for transfer in reinforcement learning. arXiv, 2016.
2, 5, 6

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.
The arcade learning environment: An evaluation platform for
general agents. JAIR, 2013. 2

[5] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving:
Learning affordance for direct perception in autonomous
driving. In ICCV, pages 2722–2730, 2015. 2

[6] H. Daumé, J. Langford, and D. Marcu. Search-based struc-
tured prediction. Machine learning, 75(3):297–325, 2009.
2

[7] P. Dayan. Improving generalization for temporal difference
learning: The successor representation. Neural Computa-
tion, 1993. 2, 4

[8] M. P. Deisenroth and C. E. Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In ICML,
2011. 2

[9] M. Denil, P. Agrawal, T. D. Kulkarni, T. Erez, P. Battaglia,
and N. de Freitas. Learning to perform physics experiments
via deep reinforcement learning. arXiv, 2016. 2

[10] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel. Inte-
grating symbolic and geometric planning for mobile manip-
ulation. In SSRR, 2009. 2

[11] A. Dosovitskiy and V. Koltun. Learning to act by predicting
the future. In ICLR, 2017. 2

[12] A. Fathi and J. M. Rehg. Modeling actions through state
changes. In CVPR, 2013. 2

[13] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial
intelligence, 1971. 2, 3

[14] M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
theory and practice. 2004. 3

[15] J. J. Gibson. The ecological approach to visual perception:
classic edition. 2014. 3, 8

[16] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforce-
ment learning for robotic manipulation with asynchronous
off-policy updates. In ICRA, 2017. 2

[17] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep
learning for real-time atari game play using offline monte-
carlo tree search planning. In NIPS, 2014. 2

[18] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and
R. Cipolla. Understanding real world indoor scenes with
synthetic data. In CVPR, 2016. 2

[19] J. Ho and S. Ermon. Generative adversarial imitation learn-
ing. In NIPS, 2016. 2

[20] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and
motion planning in the now. In ICRA, 2011. 2, 3

[21] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jakowski. ViZDoom: A doom-based AI research plat-
form for visual reinforcement learning. In CIG, 2016. 2

[22] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng. Autonomous
helicopter flight via reinforcement learning. In NIPS, 2004.
2

[23] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning
in robotics: A survey. IJRR, 2013. 2

[24] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman.
Deep successor reinforcement learning. arXiv, 2016. 2, 5, 6,
11

[25] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Ger-
shman. Building machines that learn and think like people.
arXiv, 2016. 2

[26] A. Lerer, S. Gross, and R. Fergus. Learning physical intu-
ition of block towers by example. In ICML, 2016. 2

[27] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. JMLR, 2016. 2

[28] W. Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not
to fall: A visual approach to physical stability prediction.
arXiv, 2016. 2

[29] Y. Li, J. Song, and S. Ermon. Inferring the latent structure
of human decision-making from raw visual inputs. arXiv
preprint arXiv:1703.08840, 2017. 2

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous control with
deep reinforcement learning. ICLR, 2016. 2

[31] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008. 8

[32] M. Malmir, K. Sikka, D. Forster, J. R. Movellan, and G. Cot-
trell. Deep q-learning for active recognition of germs: Base-
line performance on a standardized dataset for active learn-
ing. In BMVC, 2015. 2

[33] J. Marin, D. Vázquez, D. Gerónimo, and A. M. López.
Learning appearance in virtual scenarios for pedestrian de-
tection. In CVPR, 2010. 2

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, 2016. 2,
6, 7

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 2015. 2, 4, 6, 11

[36] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what
happens if...” learning to predict the effect of forces in im-
ages. In ECCV, 2016. 2

[37] A. Noë and J. K. ORegan. On the brain-basis of visual con-
sciousness: A sensorimotor account. Vision and mind: Se-
lected readings in the philosophy of perception, 2002. 1

[38] J. Papon and M. Schoeler. Semantic pose using deep net-
works trained on synthetic rgb-d. In ICCV, 2015. 2

[39] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The
curious robot: Learning visual representations via physical
interactions. In ECCV, 2016. 2

[40] L. Pinto and A. Gupta. Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours. In ICRA,
2016. 2

[41] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for
data: Ground truth from computer games. In ECCV, 2016. 2

[42] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and
A. Lopez. The SYNTHIA Dataset: A large collection of
synthetic images for semantic segmentation of urban scenes.
In CVPR, 2016. 2

[43] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imi-
tation learning and structured prediction to no-regret online
learning. In International Conference on Artificial Intelli-
gence and Statistics, pages 627–635, 2011. 2

[44] J. Schmidhuber. An on-line algorithm for dynamic rein-
forcement learning and planning in reactive environments.
In IJCNN, 1990. 2

[45] A. Shafaei, J. J. Little, and M. Schmidt. Play and learn: using
video games to train computer vision models. arXiv, 2016.
2

[46] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. Nature,
2016. 2

[47] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. J. Russell,
and P. Abbeel. Combined task and motion planning through
an extensible planner-independent interface layer. In ICRA,
2014. 2, 3

[48] S. Srivastava, L. Riano, S. Russell, and P. Abbeel. Us-
ing classical planners for tasks with continuous operators in
robotics. In ICAPS, 2013. 2

[49] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. 1998. 2, 4, 5

[50] A. Tamar, S. Levine, and P. Abbeel. Value iteration networks.
In NIPS, 2016. 2

[51] S. D. Tran and L. S. Davis. Event modeling and recognition
using markov logic networks. In ECCV, 2008. 2

[52] X. Wang, A. Farhadi, and A. Gupta. Actions ˜ transforma-
tions. In CVPR, 2016. 2

[53] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié, and
C. Guionneau. Torcs: The open racing car simulator. 2015.
2

[54] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven visual navigation in in-
door scenes using deep reinforcement learning. ICRA, 2017.
2, 3, 11

A. Experiment Details
A.1. Experiment Setup

We used the Adam optimizer from (Kingma and Ba) for learning our
Successor Representation (SR) model with a learning rate of 1e-4 and a
mini-batch size of 32. For the reinforcement learning experiments, we use
the discounted factor γ = 0.99 and a replay buffer size of 100,000. The
exploration term ε is annealed from 1.0 to 0.1 during the training process.
We run an ε-greedy policy (ε = 0.1) during evaluation. We use soft target
updates (τ = 0.1) after every episode. For the easy and medium tasks,
we assign +10.0 immediate reward for task completion, −5.0 for invalid
actions, and −1.0 for other actions (to encourage a shorter plan). For
the hard task, we train our SR model to imitate a plan that searches all
the receptacles for an object in a fixed order of visitation based on the
spatial locations of the receptacles. We assign +1.0 immediate reward for
task completion, and an episode terminates as failure if the agent does not
follow the order of visitation in the plan.

A.2. Network Inputs
The input to the SR model consists of three components: action (ac-

tion type and argument), agent’s observation (image), and agent’s internal
state. The action type is encoded by a 7-dimensional one-hot vector, indi-
cating one of the seven action types (Navigate, Open, Close, Pick Up,
Put, Look Up, and Look Down). The action argument is encoded by a
one-hot vector that has the same dimension as the number of interactable
objects plus one. The first dimension denotes null argument used for Look
Up and Look Down actions, and the other dimensions correspond to the
index of each object. RGB images from the agent’s first-person camera are
preprocessed to 84 × 84 grayscale images. We stack four history frames
to make an 84 × 84 × 4 tensor as the image input to the convolutional
networks. The agent’s internal state is expressed by the agent’s inventory,
rotation, and viewpoint. The inventory is a one-hot vector that represents
the index of the held item, with an extra dimension for null. The rotation
is a 4-dimensional one-hot vector that represents the rotation of the agent
(90 degree turns). The viewpoint is a 3-dimensional one-hot vector that
represents the tiling angle of the agent’s camera (−30◦, 0◦, and 30◦).

A.3. Network Architecture
Here we describe the network architecture of our proposed SR model.

The convolutional image encoder θcnn takes an 84×84×4 image as input.
The three convolutional layers are 32 filters of size 8× 8 with stride 4, 64
filters of size 4×4 with stride 2, 64 filters of size 3×3 with stride 1. Finally
a fully-connected layer maps the outputs from the convolutional encoder
into a 512-d feature. The actions encoder θmlp and internal state encoder
θint are both 2-layer MLPs with 512 hidden units. A concatenated vector
of action, internal state, and image encodings is fed into two 2-layer MLPs
θr and θq with 512 hidden units to produce the 512-d state-action feature
φs,a and the successor feature ψs,a. We take the dot product of the 512-
d reward predictor vector w and state-action features (successor features)
to compute the immediate rewards (Q values). All the hidden layers use
ReLU non-linearities. The final dot product layers of the immediate reward
and the Q value produce raw values without any non-linearity.

B. Algorithm Details
We describe the reinforcement learning procedure of the SR model in

Algorithm 1. This training method follows closely with previous work on
deep Q-learning [35] and deep SR model [24]. Similar to these two works,
replay buffer and target network are used to stabilize training.

C. Action Space
The set of plausible actions in a scene is determined by the variety of

objects in the scene. On average each scene has 53 objects (a subset of

them are interactable) and the agent is able to perform 80 actions. Here
we provide an example scene to illustrate the interactable objects and the
action space.

Scene #9: 16 items, 23 receptacles (at 11 unique locations), and 15 con-
tainers (a subset of receptacles)

Figure 8. Screenshot of Scene #9

items: apple, bowl, bread, butter knife, glass bottle, egg, fork, knife, let-
tuce, mug 1-3, plate, potato, spoon, tomato

receptacles: cabinet 1-13, coffee machine, fridge, garbage can, mi-
crowave, sink, stove burner 1-4, table top

containers: cabinet 1-13, fridge, microwave

actions: 80 actions in total, including 11 Navigation actions, 15 Open
actions, 15 Close actions, 14 Pick Up actions, 23 Put actions, Look Up
and Look Down.

We have fewer Navigation and Pick Up actions than the number of recep-
tacles and items respectively, as we merge some adjacent receptacles to one
location (navigation destination). We also merge picking up items from the
same object category into one action. This reduces the size of the action
space and speeds up learning. An important simplification that we made is
to treat the Navigation actions as “teleports”, which abstracts away from
visual navigation of the agent. The actual visual navigation problem can
be solved as an independent subroutine from previous work [54]. As dis-
cussed in Sec. 3.2, not all actions in the set can be issued given a certain
circumstance based on affordance. We use the PDDL language to check
if the preconditions of an action are satisfied before the action is sent to
THOR for execution.

D. Tasks

We list all the tasks that we have evaluated in the experiments in Ta-
ble 2. In summary, we evaluated tasks from three levels of difficulty, with
10 easy tasks, 8 medium tasks, and 7 hard tasks.

References

[1] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

Algorithm 1 Reinforcement Learning for Successor Representation Model
1: procedure RL-TRAINING
2: Initialize replay buffer D to size N
3: Initialize an SR network θ with random weights θ = [θint, θcnn, θmlp, θr, θq,w]

4: Make a clone of θ as the target network θ̃
5: for i = 1 : #episodes do:
6: Initialize an environment with random configuration
7: Reset exploration term ε = 1.0
8: while not terminal do
9: Get agent’s observation and internal state st from the environment

10: Compute Qst,a = f(st, a; θ) for every action a in action space
11: With probability ε select a random action at; otherwise, select at = argmaxaQst,a
12: Execute action at to obtain the immediate reward rt and the next state st+1

13: Store transition (st, at, rt, st+1) in D
14: Sample a random mini-batch of transitions (sj , aj , rj , sj+1) from D
15: Compute r̃j , φsj ,aj , and ψsj ,aj using θ for every transition j
16: Compute gradients that minimize the mean squared error between rj and r̃j
17: Compute φsj+1,a, ψsj+1,a, and Q̃sj+1,a using θ̃ for every transition j and every action a
18: if sj+1 is a terminal state then:
19: Compute gradients that minimize the mean squared error between ψsj ,aj and φsj ,aj
20: else:
21: Compute gradients that minimize the mean squared error between ψsj ,aj and φsj ,aj + γψsj+1,a′

22: where a′ = argmaxa Q̃sj+1,a

23: end if
24: Perform a gradient descend step to update θ
25: end while
26: Anneal exploration term ε
27: Soft-update target network θ̃ using θ
28: end for
29: end procedure

Table 2. List of Tasks from Three Levels of Difficulty

Scene Easy Medium Hard
1 open / close fridge put lettuce, tomato and glass bottle to the sink find bowl and put in sink
2 open / close cabinet put apple, egg and glass bottle to the table top find plate and put in cabinet
3 open / close microwave put glass bottle, lettuce and apple to the table top find lettuce and put in fridge
4 open / close cabinet put three mugs to the fridge find glass bottle and put in microwave
5 open / close fridge - -
6 open / close fridge - -
7 open / close cabinet put three mugs to the table top -
8 open / close fridge put potato, tomato and apple to the sink find lettuce and put on table top
9 open / close microwave put three mugs to the table top find glass bottle and put in fridge

10 open / close cabinet put glass bottle, bread and lettuce to fridge find bowl and put in sink

